Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs

计算机科学 偏爱 背景(考古学) 推论 空间语境意识 情报检索 数据挖掘 机器学习 人工智能 地理 经济 考古 微观经济学
作者
Dingqi Yang,Daqing Zhang,Vincent W. Zheng,Zhiyong Yu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 129-142 被引量:481
标识
DOI:10.1109/tsmc.2014.2327053
摘要

With the recent surge of location based social networks (LBSNs), activity data of millions of users has become attainable. This data contains not only spatial and temporal stamps of user activity, but also its semantic information. LBSNs can help to understand mobile users' spatial temporal activity preference (STAP), which can enable a wide range of ubiquitous applications, such as personalized context-aware location recommendation and group-oriented advertisement. However, modeling such user-specific STAP needs to tackle high-dimensional data, i.e., user-location-time-activity quadruples, which is complicated and usually suffers from a data sparsity problem. In order to address this problem, we propose a STAP model. It first models the spatial and temporal activity preference separately, and then uses a principle way to combine them for preference inference. In order to characterize the impact of spatial features on user activity preference, we propose the notion of personal functional region and related parameters to model and infer user spatial activity preference. In order to model the user temporal activity preference with sparse user activity data in LBSNs, we propose to exploit the temporal activity similarity among different users and apply nonnegative tensor factorization to collaboratively infer temporal activity preference. Finally, we put forward a context-aware fusion framework to combine the spatial and temporal activity preference models for preference inference. We evaluate our proposed approach on three real-world datasets collected from New York and Tokyo, and show that our STAP model consistently outperforms the baseline approaches in various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Biu完成签到,获得积分10
刚刚
2秒前
小飞侠07完成签到,获得积分10
2秒前
冬菊完成签到 ,获得积分10
3秒前
4秒前
zyl完成签到,获得积分10
4秒前
somnus完成签到,获得积分10
4秒前
5秒前
fff完成签到,获得积分20
6秒前
AstonMAO_完成签到,获得积分10
6秒前
yznfly应助粽粽采纳,获得40
7秒前
萝卜爱吃葡萄皮完成签到,获得积分10
7秒前
chenhua5460完成签到,获得积分10
8秒前
王一博发布了新的文献求助10
8秒前
Lucas应助hehe采纳,获得10
10秒前
10秒前
10秒前
科研通AI5应助Chen采纳,获得10
10秒前
小美完成签到,获得积分10
12秒前
噜啦噜啦嘞完成签到,获得积分10
13秒前
13秒前
王一博完成签到,获得积分10
14秒前
Hello应助nacoo采纳,获得10
14秒前
崔龙锋发布了新的文献求助10
14秒前
e746700020发布了新的文献求助10
15秒前
Delia发布了新的文献求助30
16秒前
16秒前
16秒前
科目三应助石榴汁的书采纳,获得10
17秒前
QVQ完成签到,获得积分10
17秒前
18秒前
小鱼干完成签到,获得积分20
19秒前
19秒前
19秒前
Franklin_zhang完成签到,获得积分20
19秒前
小蘑菇应助JC采纳,获得10
19秒前
奋斗鲂发布了新的文献求助10
20秒前
YangMengJing_发布了新的文献求助10
20秒前
克罗地亚哇咔咔完成签到,获得积分20
21秒前
传奇3应助激昂的寒凡采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4699292
求助须知:如何正确求助?哪些是违规求助? 4068133
关于积分的说明 12577472
捐赠科研通 3767781
什么是DOI,文献DOI怎么找? 2080897
邀请新用户注册赠送积分活动 1108750
科研通“疑难数据库(出版商)”最低求助积分说明 987050