亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs

计算机科学 偏爱 背景(考古学) 推论 空间语境意识 情报检索 数据挖掘 机器学习 人工智能 地理 经济 考古 微观经济学
作者
Dingqi Yang,Daqing Zhang,Vincent W. Zheng,Zhiyong Yu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 129-142 被引量:481
标识
DOI:10.1109/tsmc.2014.2327053
摘要

With the recent surge of location based social networks (LBSNs), activity data of millions of users has become attainable. This data contains not only spatial and temporal stamps of user activity, but also its semantic information. LBSNs can help to understand mobile users' spatial temporal activity preference (STAP), which can enable a wide range of ubiquitous applications, such as personalized context-aware location recommendation and group-oriented advertisement. However, modeling such user-specific STAP needs to tackle high-dimensional data, i.e., user-location-time-activity quadruples, which is complicated and usually suffers from a data sparsity problem. In order to address this problem, we propose a STAP model. It first models the spatial and temporal activity preference separately, and then uses a principle way to combine them for preference inference. In order to characterize the impact of spatial features on user activity preference, we propose the notion of personal functional region and related parameters to model and infer user spatial activity preference. In order to model the user temporal activity preference with sparse user activity data in LBSNs, we propose to exploit the temporal activity similarity among different users and apply nonnegative tensor factorization to collaboratively infer temporal activity preference. Finally, we put forward a context-aware fusion framework to combine the spatial and temporal activity preference models for preference inference. We evaluate our proposed approach on three real-world datasets collected from New York and Tokyo, and show that our STAP model consistently outperforms the baseline approaches in various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助123456采纳,获得10
15秒前
shaylie完成签到 ,获得积分10
16秒前
22秒前
123456发布了新的文献求助10
26秒前
guan发布了新的文献求助30
27秒前
周旭发布了新的文献求助10
36秒前
ma关闭了ma文献求助
40秒前
HuiHui完成签到,获得积分10
42秒前
46秒前
丘比特应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
搜集达人应助不是狸猫采纳,获得10
46秒前
星辰大海应助叙温雨采纳,获得10
46秒前
在水一方应助123456采纳,获得10
48秒前
唐荣完成签到,获得积分10
49秒前
脑洞疼应助周旭采纳,获得10
53秒前
57秒前
123456发布了新的文献求助10
1分钟前
1分钟前
1分钟前
只想发财完成签到 ,获得积分10
1分钟前
asdf完成签到,获得积分10
1分钟前
如雨坠完成签到 ,获得积分10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
隐形曼青应助123456采纳,获得10
1分钟前
缓慢的烨伟完成签到,获得积分10
1分钟前
dagangwood完成签到 ,获得积分10
1分钟前
TX完成签到,获得积分10
1分钟前
TX发布了新的文献求助100
1分钟前
1分钟前
123456完成签到,获得积分10
2分钟前
孟雯毓完成签到,获得积分10
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
小鸟芋圆露露完成签到 ,获得积分10
2分钟前
不是狸猫发布了新的文献求助10
2分钟前
单薄绿竹完成签到,获得积分10
2分钟前
徐志豪完成签到,获得积分20
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291429
求助须知:如何正确求助?哪些是违规求助? 4442437
关于积分的说明 13829910
捐赠科研通 4325471
什么是DOI,文献DOI怎么找? 2374277
邀请新用户注册赠送积分活动 1369588
关于科研通互助平台的介绍 1333781