亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Relational learning via latent social dimensions

判别式 计算机科学 推论 统计关系学习 社会化媒体 社交网络(社会语言学) 人工智能 相互依存 机器学习 关系数据库 数据科学 万维网 数据挖掘 社会学 社会科学
作者
Lei Tang,Huan Liu
标识
DOI:10.1145/1557019.1557109
摘要

Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. However, connections in social media are often multi-dimensional. An actor can connect to another actor for different reasons, e.g., alumni, colleagues, living in the same city, sharing similar interests, etc. Collective inference normally does not differentiate these connections. In this work, we propose to extract latent social dimensions based on network information, and then utilize them as features for discriminative learning. These social dimensions describe diverse affiliations of actors hidden in the network, and the discriminative learning can automatically determine which affiliations are better aligned with the class labels. Such a scheme is preferred when multiple diverse relations are associated with the same network. We conduct extensive experiments on social media data (one from a real-world blog site and the other from a popular content sharing site). Our model outperforms representative relational learning methods based on collective inference, especially when few labeled data are available. The sensitivity of this model and its connection to existing methods are also examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
3秒前
樱桃小贩完成签到,获得积分10
5秒前
ww完成签到,获得积分10
6秒前
79完成签到 ,获得积分10
7秒前
情怀应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
9秒前
Lyn完成签到 ,获得积分10
9秒前
爱撒娇的紫南完成签到 ,获得积分10
12秒前
所所应助科研捣蛋鬼采纳,获得10
12秒前
xj0806完成签到 ,获得积分10
12秒前
轻松香寒完成签到,获得积分10
14秒前
LB完成签到,获得积分10
17秒前
刘刘完成签到 ,获得积分10
21秒前
23秒前
24秒前
25秒前
嘟嘟嘟发布了新的文献求助10
28秒前
shuyi_liu发布了新的文献求助10
31秒前
shuyi_liu完成签到,获得积分10
35秒前
39秒前
yoyo完成签到,获得积分10
39秒前
失眠克星发布了新的文献求助10
42秒前
43秒前
Leon完成签到 ,获得积分0
48秒前
涂穆完成签到,获得积分10
49秒前
丘比特应助小台采纳,获得10
57秒前
天天快乐应助1121采纳,获得10
59秒前
李健应助妖精采纳,获得100
1分钟前
朝闻道完成签到 ,获得积分10
1分钟前
深情安青应助zhj采纳,获得10
1分钟前
TT发布了新的文献求助10
1分钟前
1分钟前
小台发布了新的文献求助10
1分钟前
1分钟前
1分钟前
chenting完成签到 ,获得积分10
1分钟前
苏梗完成签到 ,获得积分10
1分钟前
江小白完成签到,获得积分0
1分钟前
齐桉完成签到 ,获得积分10
1分钟前
skbkbe完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833694
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492178
捐赠科研通 3095704
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792