吉布斯抽样
自回归模型
计量经济学
离群值
异方差
贝叶斯概率
统计
空间计量经济学
星型
数学
计算机科学
自回归积分移动平均
时间序列
标识
DOI:10.1177/016001769702000107
摘要
Spatial econometrics has relied extensively on spatial autoregressive models. Anselin (1988) developed a taxonomy of these models using a regression model framework and maximum likelihood estimation methods. A Bayesian approach to estimating these models based on Gibbs sampling is introduced here. It allows for non-constant variance over space taking an unspecified form and outliers in the sample data. In addition, estimates of the non-constant variance at each point in space allow inferences regarding the spatial nature of heteroskedasticity and the position of outliers.
科研通智能强力驱动
Strongly Powered by AbleSci AI