吸引子
豪斯多夫维数
有界函数
指数函数
数学
数学分析
欧米茄
分形维数
指数衰减
非线性系统
分形
豪斯多夫空间
纯数学
物理
量子力学
标识
DOI:10.3934/dcds.2009.25.1041
摘要
The paper deals with the nonlinear evolution equationε∂ttu + $\delta$∂tu+ $\omega$∂xxxx u-$[\beta+\int_0^1[\partial_y u(y,t)]^2\d y ]$∂xxu=f,which describes the motion of the vertical deflection of an extensible Kirchhoff beam. The existence of the global attractor of optimal regularity is shown, as well as the existence of a family of exponential attractors Hölder-continuous in the symmetric Hausdorff distance (with respect to ε) and of finite fractal dimension uniformly bounded with respect to ε.
科研通智能强力驱动
Strongly Powered by AbleSci AI