Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction

医学 算法 射血分数 内科学 假阳性悖论 心脏病学 前瞻性队列研究 队列 心电图 心力衰竭 机器学习 计算机科学
作者
Zachi I. Attia,Suraj Kapa,Xiaoxi Yao,Francisco Lopez‐Jimenez,Tarun L. Mohan,Patricia A. Pellikka,Rickey E. Carter,Nilay D. Shah,Paul A. Friedman,Peter A. Noseworthy
出处
期刊:Journal of Cardiovascular Electrophysiology [Wiley]
卷期号:30 (5): 668-674 被引量:137
标识
DOI:10.1111/jce.13889
摘要

Abstract Objectives We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12‐lead electrocardiogram (ECG) in a large prospective cohort. Background Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging. Methods We applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new “positive screens.” Results Among 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 “false‐positives screens,” 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT‐pro‐BNP after the initial “positive screen.” Conclusions A deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小心力学发布了新的文献求助10
1秒前
sketch发布了新的文献求助10
3秒前
SYLH应助机智胡萝卜采纳,获得10
5秒前
5秒前
6秒前
7秒前
shuangma发布了新的文献求助20
7秒前
沈惠映发布了新的文献求助30
8秒前
AronHUANG发布了新的文献求助10
8秒前
小心力学完成签到,获得积分10
8秒前
赘婿应助mrright采纳,获得10
9秒前
勤奋的幻莲完成签到,获得积分10
10秒前
毅力鸟完成签到,获得积分10
10秒前
洁净的钢笔完成签到 ,获得积分10
11秒前
谷粱诗云发布了新的文献求助10
11秒前
海君发布了新的文献求助10
12秒前
13秒前
乐乐应助3D采纳,获得10
13秒前
研友_VZG7GZ应助ppppp采纳,获得10
14秒前
ZIJUNZHAO完成签到 ,获得积分10
16秒前
NSGB完成签到 ,获得积分10
16秒前
16秒前
17秒前
英俊的铭应助勤奋的幻莲采纳,获得10
17秒前
甜蜜的凌旋完成签到,获得积分10
18秒前
CC发布了新的文献求助10
19秒前
19秒前
充电宝应助的呀呀采纳,获得10
19秒前
棋士应助妮露的修狗采纳,获得20
20秒前
20秒前
波波冰完成签到,获得积分10
20秒前
黄子舟完成签到,获得积分10
21秒前
九月发布了新的文献求助10
21秒前
21秒前
天天快乐应助张占采纳,获得10
22秒前
动脉血气分析完成签到,获得积分10
22秒前
香蕉觅云应助甜崽采纳,获得10
23秒前
23秒前
远志发布了新的文献求助10
24秒前
CC完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947314
求助须知:如何正确求助?哪些是违规求助? 3492482
关于积分的说明 11065556
捐赠科研通 3223391
什么是DOI,文献DOI怎么找? 1781438
邀请新用户注册赠送积分活动 866310
科研通“疑难数据库(出版商)”最低求助积分说明 800276