度量(数据仓库)
溢出效应
扩散
推论
计量经济学
因果推理
上下界
计算机科学
理论(学习稳定性)
社交网络(社会语言学)
二进制数
数学
统计
经济
数据挖掘
人工智能
微观经济学
机器学习
物理
数学分析
万维网
社会化媒体
热力学
算术
作者
Xiaoqi He,Kyungchul Song
标识
DOI:10.1093/restud/rdad115
摘要
Abstract This article introduces a measure of the diffusion of binary outcomes over a large, sparse network, when the diffusion is observed in two time periods. The measure captures the aggregated spillover effect of the state-switches in the initial period on their neighbours’ outcomes in the second period. This article introduces a causal network that captures the causal connections among the cross-sectional units over the two periods. It shows that when the researcher’s observed network contains the causal network as a subgraph, the measure of diffusion is identified as a simple, spatio-temporal dependence measure of observed outcomes. When the observed network does not satisfy this condition, but the spillover effect is non-negative, the spatio-temporal dependence measure serves as a lower bound for diffusion. Using this, a lower confidence bound for diffusion is proposed, and its asymptotic validity is established. The Monte Carlo simulation studies demonstrate the finite sample stability of the inference across a range of network configurations. The article applies the method to data on Indian villages to measure the diffusion of microfinancing decisions over households’ social networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI