亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy

医学 接收机工作特性 卷积神经网络 粘膜下层 内窥镜检查 人工智能 计算机辅助设计 癌症 置信区间 放射科 内科学 计算机科学 工程类 工程制图
作者
Yan Zhu,Qiu-Cheng Wang,Mei‐Dong Xu,Zhen Zhang,Jing Cheng,Yunshi Zhong,Yiqun Zhang,Weifeng Chen,Quan‐Lin Li,Ping‐Hong Zhou,Quan‐Lin Li
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:89 (4): 806-815.e1 被引量:329
标识
DOI:10.1016/j.gie.2018.11.011
摘要

According to guidelines, endoscopic resection should only be performed for patients whose early gastric cancer invasion depth is within the mucosa or submucosa of the stomach regardless of lymph node involvement. The accurate prediction of invasion depth based on endoscopic images is crucial for screening patients for endoscopic resection. We constructed a convolutional neural network computer-aided detection (CNN-CAD) system based on endoscopic images to determine invasion depth and screen patients for endoscopic resection.Endoscopic images of gastric cancer tumors were obtained from the Endoscopy Center of Zhongshan Hospital. An artificial intelligence-based CNN-CAD system was developed through transfer learning leveraging a state-of-the-art pretrained CNN architecture, ResNet50. A total of 790 images served as a development dataset and another 203 images as a test dataset. We used the CNN-CAD system to determine the invasion depth of gastric cancer and evaluated the system's classification accuracy by calculating its sensitivity, specificity, and area under the receiver operating characteristic curve.The area under the receiver operating characteristic curve for the CNN-CAD system was .94 (95% confidence interval [CI], .90-.97). At a threshold value of .5, sensitivity was 76.47%, and specificity 95.56%. Overall accuracy was 89.16%. Positive and negative predictive values were 89.66% and 88.97%, respectively. The CNN-CAD system achieved significantly higher accuracy (by 17.25%; 95% CI, 11.63-22.59) and specificity (by 32.21%; 95% CI, 26.78-37.44) than human endoscopists.We constructed a CNN-CAD system to determine the invasion depth of gastric cancer with high accuracy and specificity. This system distinguished early gastric cancer from deeper submucosal invasion and minimized overestimation of invasion depth, which could reduce unnecessary gastrectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助科研通管家采纳,获得10
10秒前
馆长应助科研通管家采纳,获得10
10秒前
馆长应助科研通管家采纳,获得10
10秒前
馆长应助科研通管家采纳,获得10
10秒前
馆长应助科研通管家采纳,获得10
10秒前
23秒前
29秒前
汉堡包应助幽默的绝悟采纳,获得10
49秒前
斯文败类应助zm采纳,获得30
1分钟前
1分钟前
zm发布了新的文献求助30
1分钟前
林夕完成签到 ,获得积分10
1分钟前
2分钟前
独木舟发布了新的文献求助10
2分钟前
satsuki关注了科研通微信公众号
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
独木舟完成签到,获得积分10
2分钟前
3分钟前
WXKennyS发布了新的文献求助30
3分钟前
馆长应助科研通管家采纳,获得10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得30
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
学术垃圾12138完成签到,获得积分10
5分钟前
馆长应助科研通管家采纳,获得10
6分钟前
Ava应助科研通管家采纳,获得10
6分钟前
fsznc1完成签到 ,获得积分0
6分钟前
阿言完成签到 ,获得积分10
7分钟前
yoona发布了新的文献求助10
8分钟前
yoona完成签到,获得积分10
9分钟前
9分钟前
简单成危完成签到,获得积分20
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851734
求助须知:如何正确求助?哪些是违规求助? 4150288
关于积分的说明 12856796
捐赠科研通 3898351
什么是DOI,文献DOI怎么找? 2142435
邀请新用户注册赠送积分活动 1162189
关于科研通互助平台的介绍 1062380