Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy

医学 接收机工作特性 卷积神经网络 粘膜下层 内窥镜检查 人工智能 计算机辅助设计 癌症 置信区间 放射科 内科学 计算机科学 工程类 工程制图
作者
Yan Zhu,Qiu-Cheng Wang,Mei‐Dong Xu,Zhen Zhang,Jing Cheng,Yunshi Zhong,Yiqun Zhang,Weifeng Chen,Quan‐Lin Li,Ping‐Hong Zhou,Quan‐Lin Li
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:89 (4): 806-815.e1 被引量:320
标识
DOI:10.1016/j.gie.2018.11.011
摘要

According to guidelines, endoscopic resection should only be performed for patients whose early gastric cancer invasion depth is within the mucosa or submucosa of the stomach regardless of lymph node involvement. The accurate prediction of invasion depth based on endoscopic images is crucial for screening patients for endoscopic resection. We constructed a convolutional neural network computer-aided detection (CNN-CAD) system based on endoscopic images to determine invasion depth and screen patients for endoscopic resection.Endoscopic images of gastric cancer tumors were obtained from the Endoscopy Center of Zhongshan Hospital. An artificial intelligence-based CNN-CAD system was developed through transfer learning leveraging a state-of-the-art pretrained CNN architecture, ResNet50. A total of 790 images served as a development dataset and another 203 images as a test dataset. We used the CNN-CAD system to determine the invasion depth of gastric cancer and evaluated the system's classification accuracy by calculating its sensitivity, specificity, and area under the receiver operating characteristic curve.The area under the receiver operating characteristic curve for the CNN-CAD system was .94 (95% confidence interval [CI], .90-.97). At a threshold value of .5, sensitivity was 76.47%, and specificity 95.56%. Overall accuracy was 89.16%. Positive and negative predictive values were 89.66% and 88.97%, respectively. The CNN-CAD system achieved significantly higher accuracy (by 17.25%; 95% CI, 11.63-22.59) and specificity (by 32.21%; 95% CI, 26.78-37.44) than human endoscopists.We constructed a CNN-CAD system to determine the invasion depth of gastric cancer with high accuracy and specificity. This system distinguished early gastric cancer from deeper submucosal invasion and minimized overestimation of invasion depth, which could reduce unnecessary gastrectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学不会物理的男孩完成签到,获得积分10
1秒前
灿星完成签到,获得积分10
2秒前
Dr_Stars完成签到,获得积分10
3秒前
xiao完成签到 ,获得积分10
4秒前
5秒前
精明的书白完成签到,获得积分10
6秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
小粽子应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助safa采纳,获得10
10秒前
阿里巴尼亚完成签到,获得积分10
10秒前
远方发布了新的文献求助10
11秒前
端庄的小蝴蝶完成签到,获得积分10
12秒前
gxl完成签到,获得积分10
14秒前
14秒前
zoey发布了新的文献求助10
14秒前
14秒前
oneonlycrown完成签到,获得积分10
19秒前
YOYOYO应助野猪小飞船采纳,获得30
20秒前
20秒前
21秒前
22秒前
23秒前
sherry完成签到 ,获得积分10
23秒前
xxxzy完成签到,获得积分10
23秒前
safa发布了新的文献求助10
25秒前
taster完成签到,获得积分10
27秒前
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845908
求助须知:如何正确求助?哪些是违规求助? 3388274
关于积分的说明 10552482
捐赠科研通 3108911
什么是DOI,文献DOI怎么找? 1713214
邀请新用户注册赠送积分活动 824607
科研通“疑难数据库(出版商)”最低求助积分说明 774938