快速眼动睡眠行为障碍
K-络合物
睡眠(系统调用)
听力学
睡眠纺锤
心理学
医学
前庭诱发肌源性电位
慢波睡眠
多导睡眠图
非快速眼动睡眠
神经科学
快速眼动睡眠
前庭系统
脑电图
操作系统
计算机科学
作者
Monica Puligheddu,Michela Figorilli,Alessandra Serra,Ilaria Laccu,Patrizia Congiu,Ludovica Tamburrino,Edoardo Rosario de Natale,Francesca Ginatempo,Franca Deriu,Gianluigi Loi,Maria Livia Fantini,Carlos H. Schenck,Raffaele Ferri
出处
期刊:Sleep
[Oxford University Press]
日期:2019-07-08
卷期号:42 (9)
被引量:23
摘要
The neurophysiological hallmark of REM sleep behavior disorder (RBD) is loss of atonia during REM sleep. Indeed, signs and symptoms of neurodegeneration can occur after years, even decades, from its beginning. This study aimed to measure neurophysiological alterations of the brainstem that potentially correlate with the severity of atonia loss, and determining whether a prodromal neurodegenerative disorder underlines this condition when it occurs as an isolated condition (iRBD). Subjects with iRBD and matched healthy controls were recruited. The study included the recording of one-night polysomnography, vestibular-evoked myogenic potentials (VEMPs), and a [123I]-FP-CIT dopamine transporter (DAT) scan. The quantification of REM sleep without atonia (RSWA) was made according to two previously published manual methods and one automated method. The rate of alteration of VEMPs and VEMP score were significantly higher in iRBD patients than controls. Moreover, VEMP score was negatively correlated with the automated REM atonia index; a marginal statistical significance was also reached for the positive correlation with the visual tonic electromyographic parameter, while the other correlations, including that with DAT-scan score were not statistically significant. Brainstem neurophysiology in iRBD can be assessed by VEMPs and their alterations may possibly indicate an early expression of the neurodegenerative process underlying this disorder at the brainstem level, which awaits future longitudinal confirmation. The correlation between RSWA and VEMP alteration might also represent a prodromal aspect anticipating the possible evolution from iRBD to neurodegeneration, whereas DAT-scan abnormalities might represent a later step in this evolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI