半定规划
解释平方和
多项式的
分解
李雅普诺夫函数
多元微积分
非线性系统
理论(学习稳定性)
MATLAB语言
工具箱
数学优化
最小二乘函数近似
简单(哲学)
计算机科学
数学
应用数学
域代数上的
控制工程
工程类
纯数学
估计员
生态学
认识论
生物
程序设计语言
操作系统
机器学习
量子力学
物理
统计
哲学
数学分析
作者
Andrés Pantoja,Eduardo Mójica Nava,Nicanor Quijano
标识
DOI:10.15446/ing.investig.v30n3.18178
摘要
The sum of squares (SOS) decomposition technique allows numerical methods such as semidefinite programming to be used for proving the positivity of multivariable polynomial functions. It is well known that it is not an easy task to find Lyapunov functions for stability analysis of nonlinear systems. An algorithmic tool is used in this work for solving this problem. This approach is presented as SOS programming and solutions were obtained with a Matlab toolbox. Simple examples of SOS concepts, stability analysis for nonlinear polynomial and rational systems with uncertainties in parameters are presented to show the use of this tool. Besides these approaches, an alternative stability analysis for switched systems using a polynomial approach is also presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI