反推
控制理论(社会学)
自适应控制
参数统计
有界函数
控制器(灌溉)
非线性系统
线性系统
观察员(物理)
指数稳定性
可见的
理论(学习稳定性)
计算机科学
自适应系统
严格反馈表
数学
控制(管理)
数学分析
统计
物理
量子力学
人工智能
机器学习
农学
生物
作者
Kaiwen Chen,Alessandro Astolfi
标识
DOI:10.23919/acc.2018.8431444
摘要
A new method for the adaptive control of linear systems with time-varying parameters is proposed. The method does not require any restriction on the rates of parameter variations. For linear systems in parametric strict-feedback form a state feedback adaptive backstepping controller with nonlinear damping terms is proposed and stability properties are proved. For systems in observable canonical form an ISS Kreisselmeier filter and an adaptive observer backstepping controller with an additional linear damping term are proposed: these guarantee asymptotic output regulation and bounded states. Simulation results show that the proposed controllers have superior performance over the standard controllers in the presence of varying parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI