已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-scale adaptive transformer with feature enhancement for fault diagnosis of rolling bearings under imbalanced small-sample and cross-condition scenarios

作者
Wang Xu,Yue Si,An Lei,Lingfei Kong,Weichao Guo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251371293
摘要

With the increasing complexity of industrial machinery and the growing demand for intelligent fault diagnosis, accurately identifying rolling bearing faults under conditions of data scarcity and varying operating conditions has become a major challenge. In real-world applications, the scarcity of fault samples and the diversity of working environments often lead to sample imbalance and distribution shifts, which severely compromise the performance of conventional diagnostic models. To address these challenges, a novel multi-scale adaptive transformer (MAT) model is proposed for fault diagnosis of rolling bearings under imbalanced small-sample and cross-condition scenarios. The model integrates a multi-scale feature enhancement backbone with the global modeling capability of a hierarchical encoder, enabling the simultaneous extraction of fine-grained local features and long-range contextual fault representations. Specifically, the feature enhancement backbone incorporates dilated convolutions, spatial pyramid pooling, and a spatial attention mechanism to extract rich contextual information through expanded receptive fields, fuse multi-scale spatial features, and adaptively focus on fault-relevant regions to suppress noise. This design effectively improves the representational capacity and robustness of the model under data-limited conditions. In the hierarchical encoder, a channel attention residual sublayer is introduced to adaptively reweight feature dimensions, thereby increasing the sensitivity of the model to critical local features and improving the resistance of the model to overfitting. Extensive experiments conducted on the Western Reserve University and Paderborn bearing datasets demonstrate that the proposed MAT model significantly outperforms existing mainstream methods in both cross-condition and imbalanced small-sample fault diagnosis tasks. These results fully validate the effectiveness and generalization capability of the proposed approach in practical intelligent manufacturing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meng完成签到 ,获得积分10
刚刚
1秒前
爆米花应助小野蠢采纳,获得10
3秒前
田様应助着急的寒天采纳,获得10
4秒前
4秒前
life的半边天完成签到 ,获得积分10
5秒前
仲夏夜之梦完成签到,获得积分10
5秒前
豪豪发布了新的文献求助10
6秒前
6秒前
聪慧千亦发布了新的文献求助10
7秒前
大模型应助yuaner采纳,获得10
7秒前
AAA发布了新的文献求助10
8秒前
麻烦~完成签到,获得积分10
9秒前
努力的小蓁蓁完成签到,获得积分10
9秒前
春山完成签到 ,获得积分10
12秒前
13秒前
cwj完成签到,获得积分10
13秒前
14秒前
smm完成签到 ,获得积分10
14秒前
洛城完成签到,获得积分10
16秒前
AAA完成签到,获得积分10
20秒前
天注定完成签到,获得积分10
20秒前
21秒前
聪慧千亦完成签到,获得积分10
24秒前
勤劳的盼望完成签到,获得积分10
25秒前
JayChou完成签到,获得积分10
26秒前
tiffany完成签到,获得积分10
27秒前
jttjtjtj完成签到,获得积分10
27秒前
27秒前
昔年若许完成签到,获得积分10
28秒前
28秒前
33秒前
情怀应助旋转鸡爪子采纳,获得10
34秒前
完美世界应助灰二采纳,获得30
34秒前
printzhao发布了新的文献求助100
34秒前
34秒前
35秒前
豪豪完成签到,获得积分10
37秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714043
求助须知:如何正确求助?哪些是违规求助? 5220045
关于积分的说明 15272610
捐赠科研通 4865609
什么是DOI,文献DOI怎么找? 2612231
邀请新用户注册赠送积分活动 1562407
关于科研通互助平台的介绍 1519591