亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based prediction of dynamic blood dose estimates for head-and-neck cancer

放射治疗 医学 放射治疗计划 基本事实 核医学 血流 剂量学 直方图 癌症 标准差 计算机科学 辐射剂量 分歧(语言学) 人工神经网络 癌症治疗 患者数据 动态增强MRI 不利影响 分布(数学)
作者
Hoyeon Lee,Sebastian Tattenberg
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:71 (1): 015024-015024
标识
DOI:10.1088/1361-6560/ae3047
摘要

Abstract Objective. During radiotherapy, the radiation dose delivered to circulating blood can result in radiation-induced lymphopenia, which is correlated with adverse clinical outcomes like lower survival. Increasingly complex models to simulate radiation dose delivery to circulating blood have been developed in response, and their inclusion during radiotherapy treatment planning has been suggested. However, performing full dynamic blood dose simulations which take into account temporal considerations such as blood flow dynamics and treatment delivery time during the iterative treatment planning process is currently infeasible. This work presents a quasi-instantaneous deep learning-based approach to estimate blood dose simulation results to allow for their inclusion during treatment planning. Approach. We used treatment planning computed tomography images and dose-volume histograms of 157 head-and-neck cancer patients to perform dynamic blood dose simulations (HEDOS). Subsequently, a deep neural network composed of fully-connected layers and a Transformer encoder was trained to estimate the blood dose distribution obtained from HEDOS, using the same inputs as HEDOS. We used 126 patients’ data for training and internal validation and the remaining 31 patients’ data for testing. To evaluate the proposed method, we calculated the Kullback–Leibler (KL) divergence between the prediction results and the ground truth data. Additionally, we compared the minimum dose delivered to 90% of the blood particles receiving the highest dose (D 90% ) to estimate the model’s clinical efficacy. Main results. The average and standard deviation of KL divergence between the prediction and the ground truth were 0.099 and 0.092, respectively. The D 90% calculated from the predicted distribution showed a mean-absolute-percentage error of 4.60% compared to the ground truth. Significance. A deep learning-based model capable of accurately and quasi-instantaneously predicting the results of dynamic blood dose simulations was developed, paving the way for the inclusion of dynamic blood dose simulations during radiotherapy treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
喜悦的小土豆完成签到 ,获得积分10
28秒前
howgoods完成签到 ,获得积分10
31秒前
MWY完成签到,获得积分10
39秒前
科研通AI6应助MWY采纳,获得10
42秒前
Eileen完成签到 ,获得积分0
49秒前
50秒前
Nextf1sh发布了新的文献求助10
56秒前
青山随云走完成签到 ,获得积分10
59秒前
1分钟前
慕青应助小小K采纳,获得10
1分钟前
lanxinyue发布了新的文献求助10
1分钟前
nuo发布了新的文献求助10
1分钟前
林妖妖完成签到 ,获得积分10
1分钟前
1分钟前
小小K发布了新的文献求助10
1分钟前
nuo完成签到,获得积分10
1分钟前
叫我学弟完成签到 ,获得积分10
2分钟前
紧张的友灵完成签到 ,获得积分10
2分钟前
2分钟前
彩色的捕发布了新的文献求助10
2分钟前
2分钟前
林狗完成签到 ,获得积分10
3分钟前
从容芮完成签到,获得积分0
3分钟前
liang发布了新的文献求助10
3分钟前
彩色的捕完成签到,获得积分10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助liang采纳,获得10
3分钟前
3分钟前
传奇3应助1577采纳,获得10
4分钟前
4分钟前
4分钟前
1577发布了新的文献求助10
4分钟前
4分钟前
liang发布了新的文献求助10
4分钟前
4分钟前
4分钟前
liang完成签到,获得积分10
4分钟前
眯眯眼的黎昕完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639622
求助须知:如何正确求助?哪些是违规求助? 4749297
关于积分的说明 15006893
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563858
邀请新用户注册赠送积分活动 1522782
关于科研通互助平台的介绍 1482480