阴极
氧化还原
电解质
电池(电)
材料科学
催化作用
溶解度
化学工程
密度泛函理论
电子转移
吸附
电极
电流密度
无机化学
有机自由基电池
电化学
氧气
电子
酞菁
纳米技术
储能
分子
电子传输链
科技与社会
工作(物理)
联轴节(管道)
作者
Baoxing Wang,Jingyi Tian,Lei Gao,Chenyu Zhu,Jiaheng Liu,Yifan Zhang,Jiahui Li,Hong Sun,Menghan Li,Qi Wu,Shuai Yuan,Ping He,XiZhang Wang,Z. Hu
出处
期刊:Small
[Wiley]
日期:2025-12-29
卷期号:: e09824-e09824
标识
DOI:10.1002/smll.202509824
摘要
Abstract Macrocyclic redox mediators (RMs) such as iron(II) phthalocyanine (FePc) can improve lithium–oxygen (Li─O 2 ) battery performance by shuttling electrons and oxygen. However, their low solubility in electrolytes due to strong π–π interaction with carbon‐based cathodes (e.g., 3D graphene) limits practical applications. Herein, non‐sp 2 ‐carbon materials (MoN, TiN, and Ti 3 C 2 T x ) are employed as cathodes to regulate cathode‐FePc interactions, thereby increasing FePc solubility and improving Li─O 2 battery performance. For cathode‐FePc coupling catalysts, the solubility of FePc rises as its adsorption strength on cathodes (3DG, MoN, TiN, and Ti 3 C 2 T x ) decreases, creating a “volcano‐shaped” correlation with cathode‐FePc@battery performances. Correspondingly, the total resistance ( R ESR = R s + R ct ) of the batteries after charging exhibits an “inverted‐volcano” trend. The optimized TiN‐FePc catalyst achieves the highest cycling stability (392 cycles). Control experiments and density functional theory (DFT) calculations demonstrate that TiN‐FePc catalyst maintains high FePc concentration in electrolyte while facilitating electron transfer and oxygen shuttling, significantly enhancing catalytic activity. This work provides an efficient strategy for designing high‐performance Li─O 2 batteries by optimizing RMs‐cathode interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI