物理
安萨茨
通气管
混乱的
畸形波
非线性系统
孤子
统计物理学
连贯性(哲学赌博策略)
双线性插值
经典力学
航程(航空)
脉搏(音乐)
波传播
相(物质)
色散(光学)
非线性薛定谔方程
波形
数值分析
非线性光学
Korteweg–de Vries方程
功能(生物学)
振幅
量子电动力学
级联
量子力学
数学分析
计算机模拟
谱线
光谱密度
作者
Huda Alsaud,Muhammad Naveed Rafiq,Muhammad Hamza Rafiq
标识
DOI:10.1142/s0217979226500153
摘要
This study aims to investigate an in-depth analysis of the (3+1)-dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) equation describing the propagation of nonlinear dispersive waves in inhomogeneous media. By using the Hirota bilinear method, we derive an extensive range of exact solutions, the resonant Y-type and X-type soliton waves and hybrid resonant solitons. Moreover, we determine the lump-periodic, lump-rogue and breather wave interactions using a specific ansatz function method. These solutions are significant in nonlinear wave phenomena showing complex wave interactions and the balance between coherence and dispersion. For validity and reliability of reported results, we display them through 3D, 2D, density and contour plots under suitable parameter values and resonant conditions. Similarly, we investigate the perturbed dynamical system employing chaos detection tools such as phase portraits, power spectra and return maps, which confirm its chaotic behavior. These findings are significant, as they underscore the nonlinear dynamics inherent in models of mathematical physics, fluid dynamics, optics and engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI