控制理论(社会学)
控制器(灌溉)
动态规划
指数稳定性
线性系统
计算机科学
自适应控制
理论(学习稳定性)
强化学习
系统动力学
稳定性理论
最优控制
数学优化
控制工程
数学
工程类
非线性系统
控制(管理)
农学
机器学习
物理
量子力学
数学分析
人工智能
生物
作者
Weinan Gao,Zhong‐Ping Jiang
标识
DOI:10.1109/tac.2016.2548662
摘要
This note studies the adaptive optimal output regulation problem for continuous-time linear systems, which aims to achieve asymptotic tracking and disturbance rejection by minimizing some predefined costs. Reinforcement learning and adaptive dynamic programming techniques are employed to compute an approximated optimal controller using input/partial-state data despite unknown system dynamics and unmeasurable disturbance. Rigorous stability analysis shows that the proposed controller exponentially stabilizes the closed-loop system and the output of the plant asymptotically tracks the given reference signal. Simulation results on a LCL coupled inverter-based distributed generation system demonstrate the effectiveness of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI