Predicting methylphenidate response in attention deficit hyperactivity disorder: A preliminary study

哌醋甲酯 注意缺陷多动障碍 心理学 神经心理学 临床心理学 精神科 多元分析 注意力缺陷 注意缺陷障碍 医学 认知 内科学
作者
Blair Johnston,David Coghill,K. Matthews,J. Douglas Steele
出处
期刊:Journal of Psychopharmacology [SAGE]
卷期号:29 (1): 24-30 被引量:45
标识
DOI:10.1177/0269881114548438
摘要

Methylphenidate (MPH) is established as the main pharmacological treatment for patients with attention deficit hyperactivity disorder (ADHD). Whilst MPH is generally a highly effective treatment, not all patients respond, and some experience adverse reactions. Currently, there is no reliable method to predict how patients will respond, other than by exposure to a trial of medication. In this preliminary study, we sought to investigate whether an accurate predictor of clinical response to methylphenidate could be developed for individual patients, using sociodemographic, clinical and neuropsychological measures. Of the 43 boys with ADHD included in this proof-of-concept study, 30 were classed as responders and 13 as non-responders to MPH, with no significant differences in age nor verbal intelligence quotient (IQ) between the groups. Here we report the application of a multivariate analysis approach to the prediction of clinical response to MPH, which achieved an accuracy of 77% ( p = 0.005). The most important variables to the classifier were performance on a ‘go/no go’ task and comorbid conduct disorder. This preliminary study suggested that further investigation is merited. Achieving a highly significant accuracy of 77% for the prediction of MPH response is an encouraging step towards finding a reliable and clinically useful method that could minimise the number of children needlessly being exposed to MPH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的海菡完成签到,获得积分10
刚刚
NexusExplorer应助团结友爱采纳,获得10
刚刚
1秒前
EMP完成签到,获得积分20
1秒前
1秒前
wallonce发布了新的文献求助10
1秒前
耍酷的尔烟完成签到,获得积分10
1秒前
1秒前
清秀斓发布了新的文献求助10
2秒前
小Ma完成签到,获得积分20
2秒前
江小白发布了新的文献求助10
2秒前
温酒筚篥完成签到,获得积分10
3秒前
颜柳儿完成签到,获得积分10
3秒前
4秒前
EMP发布了新的文献求助10
4秒前
4秒前
王小明发布了新的文献求助10
4秒前
潮汐发布了新的文献求助10
4秒前
Sci完成签到,获得积分20
5秒前
5秒前
6秒前
HYDROGEL完成签到,获得积分20
6秒前
6秒前
杨晓蓉发布了新的文献求助10
6秒前
6秒前
顾矜应助dakui采纳,获得10
6秒前
老大发布了新的文献求助10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得30
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得20
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
雅士白农学家完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534