亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-lane detection by combining line anchor and feature shift for urban traffic management

计算机科学 特征(语言学) 频道(广播) 直线(几何图形) 干扰(通信) 人工智能 影子(心理学) 模式识别(心理学) 计算机视觉 实时计算 电信 心理学 哲学 语言学 几何学 数学 心理治疗师
作者
Jianqi Liu,Bin Deng,Caifeng Zou,Bi Zeng,Weiwen Zhang,Jianxin Tan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106238-106238 被引量:23
标识
DOI:10.1016/j.engappai.2023.106238
摘要

Lane detection is a fundamental task in urban traffic management. Like lane detection for automatic driving, lane detection for traffic management will be faced with common challenges including fog, night, shadow, no line and etc. Meanwhile, it will be faced with new and unique challenges including variable number of lanes, blocked lanes due to oversize vehicles and color interference. In this paper, we propose a multi-lane detection method by combining the line anchor and feature shift (MLD-LAFS) to cope with these challenges. The proposed method features a two-branch neural network structure based on the line anchor. The first branch is the feature shift branch incorporating spatial attention, which is designed to enhance the local features of lanes. The second branch is the global information branch incorporating channel attention and cross attention, which is designed to establish the long-distance connection of lane features. The channel attention can obtain the global channel information. The uncoupled feature shift cross attention can obtain the global spatial information. The feature map containing the global information can be obtained by fusing the feature maps of the first and second branches. The line anchor is used as the supervision information to generate the predicted lane and realize multi-lane detection. The feature shift is used to solve the problems of lane line being blocked and color interference. We perform the performance evaluation on three datasets, including CULane, TuSimple and a newly constructed dataset MonitorLane. Experimental results show that the proposed MLD-LAFS achieves remarkable results on the CULane and the TuSimple dataset. Moreover, the proposed MLD-LAFS achieves the highest grading in F1-score on the MonitorLane dataset, compared to existing solutions, including LaneATT, PolyLaneNet, Lane Shape Prediction with Transformers (LSTR) and etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
薛家泰完成签到 ,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
1111完成签到 ,获得积分10
2分钟前
逝水完成签到 ,获得积分10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
4分钟前
王小美发布了新的文献求助10
4分钟前
kbcbwb2002完成签到,获得积分10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
5分钟前
Demi_Ming发布了新的文献求助10
5分钟前
阿曼尼完成签到 ,获得积分10
6分钟前
充电宝应助Demi_Ming采纳,获得10
6分钟前
勤恳的语蝶完成签到 ,获得积分10
6分钟前
6分钟前
小丸子完成签到 ,获得积分0
7分钟前
7分钟前
霍巧凡发布了新的文献求助10
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
8分钟前
Demi_Ming发布了新的文献求助10
8分钟前
所所应助Demi_Ming采纳,获得10
8分钟前
8分钟前
蔡静雯popo发布了新的文献求助10
8分钟前
袁青寒完成签到,获得积分10
8分钟前
笨笨山芙完成签到 ,获得积分10
9分钟前
wenhao完成签到 ,获得积分10
9分钟前
青糯完成签到 ,获得积分10
9分钟前
浮游应助科研通管家采纳,获得10
9分钟前
浮游应助科研通管家采纳,获得10
9分钟前
dagangwood完成签到 ,获得积分10
9分钟前
10分钟前
Demi_Ming发布了新的文献求助10
10分钟前
Demi_Ming完成签到,获得积分10
10分钟前
浮游应助科研通管家采纳,获得10
11分钟前
李志全完成签到 ,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4553233
求助须知:如何正确求助?哪些是违规求助? 3982483
关于积分的说明 12328455
捐赠科研通 3652169
什么是DOI,文献DOI怎么找? 2011650
邀请新用户注册赠送积分活动 1046664
科研通“疑难数据库(出版商)”最低求助积分说明 935236