亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-lane detection by combining line anchor and feature shift for urban traffic management

计算机科学 特征(语言学) 频道(广播) 直线(几何图形) 干扰(通信) 人工智能 影子(心理学) 模式识别(心理学) 计算机视觉 实时计算 电信 心理学 哲学 语言学 几何学 数学 心理治疗师
作者
Jianqi Liu,Bin Deng,Caifeng Zou,Bi Zeng,Weiwen Zhang,Jianxin Tan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106238-106238 被引量:23
标识
DOI:10.1016/j.engappai.2023.106238
摘要

Lane detection is a fundamental task in urban traffic management. Like lane detection for automatic driving, lane detection for traffic management will be faced with common challenges including fog, night, shadow, no line and etc. Meanwhile, it will be faced with new and unique challenges including variable number of lanes, blocked lanes due to oversize vehicles and color interference. In this paper, we propose a multi-lane detection method by combining the line anchor and feature shift (MLD-LAFS) to cope with these challenges. The proposed method features a two-branch neural network structure based on the line anchor. The first branch is the feature shift branch incorporating spatial attention, which is designed to enhance the local features of lanes. The second branch is the global information branch incorporating channel attention and cross attention, which is designed to establish the long-distance connection of lane features. The channel attention can obtain the global channel information. The uncoupled feature shift cross attention can obtain the global spatial information. The feature map containing the global information can be obtained by fusing the feature maps of the first and second branches. The line anchor is used as the supervision information to generate the predicted lane and realize multi-lane detection. The feature shift is used to solve the problems of lane line being blocked and color interference. We perform the performance evaluation on three datasets, including CULane, TuSimple and a newly constructed dataset MonitorLane. Experimental results show that the proposed MLD-LAFS achieves remarkable results on the CULane and the TuSimple dataset. Moreover, the proposed MLD-LAFS achieves the highest grading in F1-score on the MonitorLane dataset, compared to existing solutions, including LaneATT, PolyLaneNet, Lane Shape Prediction with Transformers (LSTR) and etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香雪若梅发布了新的文献求助10
3秒前
小余同学发布了新的文献求助10
3秒前
研友_Lw4Ngn发布了新的文献求助10
4秒前
淡然严青发布了新的文献求助10
5秒前
无语大大完成签到,获得积分10
8秒前
无语大大发布了新的文献求助10
12秒前
所所应助淡然严青采纳,获得10
15秒前
16秒前
阿发发发完成签到,获得积分10
17秒前
研友_Lw4Ngn完成签到,获得积分10
18秒前
kukudou2发布了新的文献求助10
19秒前
aiiLnT完成签到 ,获得积分10
24秒前
朱问安发布了新的文献求助10
25秒前
小牛完成签到 ,获得积分10
28秒前
kukudou2完成签到,获得积分10
28秒前
淡然严青完成签到,获得积分10
30秒前
45秒前
45秒前
zw发布了新的文献求助10
47秒前
48秒前
49秒前
pojian完成签到,获得积分10
51秒前
皮皮发布了新的文献求助30
51秒前
端庄书雁发布了新的文献求助10
54秒前
danmoyjj发布了新的文献求助10
55秒前
完美世界应助端庄书雁采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
瑾瑜完成签到 ,获得积分10
1分钟前
香蕉觅云应助MinQi采纳,获得10
1分钟前
长度2到发布了新的文献求助10
1分钟前
脑洞疼应助清秀平文采纳,获得10
1分钟前
1分钟前
赘婿应助虚幻羊青采纳,获得10
1分钟前
1分钟前
醉熏的山彤完成签到 ,获得积分20
1分钟前
yuna完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098752
求助须知:如何正确求助?哪些是违规求助? 3636370
关于积分的说明 11525424
捐赠科研通 3346329
什么是DOI,文献DOI怎么找? 1839138
邀请新用户注册赠送积分活动 906496
科研通“疑难数据库(出版商)”最低求助积分说明 823812