Predictive Control of a Heaving Compensation System Based on Machine Learning Prediction Algorithm

模型预测控制 前馈 补偿(心理学) 有效载荷(计算) 人工神经网络 工程类 计算机科学 控制理论(社会学) 人工智能 控制工程 控制(管理) 心理学 计算机网络 网络数据包 精神分析
作者
Lifen Hu,Ming Zhang,Zhiming Yuan,Huizhen Zheng,Wenbin Lyu
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 821-821 被引量:1
标识
DOI:10.3390/jmse11040821
摘要

Floating structures have become a major part of offshore structure communities as offshore engineering moves from shallow waters to deeper ones. Floating installation ships or platforms are widely used in these engineering operations. Unexpected wave-induced motions affect floating structures, especially in harsh sea conditions. Horizontal motions on the sea surface can be offset by a dynamic positioning system, and heave motions can be controlled by a heave compensation system. Active heave compensation (AHC) systems are applied to control vertical heave motions and improve safety and efficiency. Predictive control based on machine learning prediction algorithms further improves the performance of active heave compensation control systems. This study proposes a predictive control strategy for an active heave compensation system with a machine learning prediction algorithm to minimise the heave motion of crane payload. A predictive active compensation model is presented to verify the proposed predictive control strategy, and proportion–integration–differentiation control with predictive control is adopted. The reliability of back propagation neural network (BPNN) and long short-term memory recurrent neural network (LSTM RNN) prediction algorithms is proven. The influence of the predictive error on compensation performance is analysed by comparing predictive feedforward cases with actual-data feedforward cases. Predictive feedforward control with regular and irregular wave conditions is discussed, and the possible strategies are examined. After implementing the proposed predictive control strategy based on a machine learning algorithm in an active heave compensation system, the heave motion of the payload is reduced considerably. This investigation is expected to contribute to the motion control strategy of floating structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
科研通AI5应助无则灵采纳,获得10
3秒前
神秘人发布了新的文献求助10
3秒前
晚霞不晚发布了新的文献求助10
3秒前
5秒前
6秒前
TANG发布了新的文献求助10
6秒前
英俊的铭应助xx采纳,获得10
6秒前
科研通AI5应助小黄人采纳,获得10
6秒前
6秒前
8秒前
无花果应助namaka采纳,获得10
9秒前
9秒前
10秒前
脑洞疼应助洁净山芙采纳,获得10
10秒前
cc发布了新的文献求助10
10秒前
DUANG-Jerry发布了新的文献求助10
11秒前
科研通AI2S应助小凉采纳,获得10
11秒前
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
Rita应助科研通管家采纳,获得30
13秒前
JamesPei应助科研通管家采纳,获得20
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
ardejiang发布了新的文献求助30
15秒前
15秒前
小猪完成签到 ,获得积分10
15秒前
123完成签到,获得积分10
15秒前
guoguo发布了新的文献求助10
16秒前
16秒前
17秒前
書生应助TANG采纳,获得20
17秒前
17秒前
ww完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847211
求助须知:如何正确求助?哪些是违规求助? 3389697
关于积分的说明 10558304
捐赠科研通 3109976
什么是DOI,文献DOI怎么找? 1714138
邀请新用户注册赠送积分活动 825079
科研通“疑难数据库(出版商)”最低求助积分说明 775238