协方差
数学
非线性系统
加密
摄动(天文学)
上下界
卡尔曼滤波器
有界函数
算法
Riccati方程
应用数学
控制理论(社会学)
数学优化
计算机科学
统计
偏微分方程
数学分析
人工智能
物理
控制(管理)
量子力学
操作系统
作者
Peixia Gao,Chaoqing Jia,Aozhan Zhou
标识
DOI:10.1080/21642583.2024.2357796
摘要
This paper discusses the encryption-decryption-based state estimation (EDBSE) issue for coupled perturbation complex networks (CPCNs) in the framework of the Kalman-type filtering scheme. A uniform distributed random variable is employed to characterize the coupled perturbation among different network units. A uniform-quantization-dependent encryption-decryption (UQDED) scheme is considered here to orchestrate the transmitted data. A novel EDBSE approach is developed such that the upper bounds of prediction error (PE) covariance (PEC) and estimation error (EE) covariance (EEC) can be derived by resolving Riccati-like difference equations and the estimation parameter (EP) is determined by minimizing the trace of the upper bound of EEC. Furthermore, a uniformly bounded condition is elaborated to evaluate the algorithm performance of EDBSE. Finally, an illustrative example is conducted to verify the validity of the introduced EDBSE method.
科研通智能强力驱动
Strongly Powered by AbleSci AI