Accurate and Efficient Event-Based Semantic Segmentation Using Adaptive Spiking Encoder–Decoder Network

计算机科学 编码器 分割 人工智能 事件(粒子物理) 模式识别(心理学) 计算机视觉 物理 量子力学 操作系统
作者
Rui Zhang,Luziwei Leng,Kaiwei Che,Hu Zhang,Jie Cheng,Qinghai Guo,Jianxing Liao,Ran Cheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tnnls.2024.3437415
摘要

Spiking neural networks (SNNs), known for their low-power, event-driven computation, and intrinsic temporal dynamics, are emerging as promising solutions for processing dynamic, asynchronous signals from event-based sensors. Despite their potential, SNNs face challenges in training and architectural design, resulting in limited performance in challenging event-based dense prediction tasks compared with artificial neural networks (ANNs). In this work, we develop an efficient spiking encoder-decoder network (SpikingEDN) for large-scale event-based semantic segmentation (EbSS) tasks. To enhance the learning efficiency from dynamic event streams, we harness the adaptive threshold which improves network accuracy, sparsity, and robustness in streaming inference. Moreover, we develop a dual-path spiking spatially adaptive modulation (SSAM) module, which is specifically tailored to enhance the representation of sparse events and multimodal inputs, thereby considerably improving network performance. Our SpikingEDN attains a mean intersection over union (MIoU) of 72.57% on the DDD17 dataset and 58.32% on the larger DSEC-Semantic dataset, showing competitive results to the state-of-the-art ANNs while requiring substantially fewer computational resources. Our results shed light on the untapped potential of SNNs in event-based vision applications. The source codes are publicly available at https://github.com/EMI-Group/spikingedn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野性的花生完成签到,获得积分20
刚刚
刚刚
皖医梁朝伟完成签到 ,获得积分10
1秒前
1秒前
蛋花花花发布了新的文献求助10
1秒前
jackwang完成签到,获得积分10
1秒前
蟹蟹发布了新的文献求助10
1秒前
千帆发布了新的文献求助10
1秒前
HR112给HR112的求助进行了留言
1秒前
1秒前
GEZI完成签到,获得积分10
2秒前
2秒前
拘礼夫人完成签到,获得积分10
3秒前
3秒前
4秒前
Joshua发布了新的文献求助10
4秒前
zkkz完成签到,获得积分10
4秒前
11发布了新的文献求助10
4秒前
Jasper应助野性的花生采纳,获得10
5秒前
wy1693207859完成签到,获得积分10
5秒前
思源应助h'c'z采纳,获得10
5秒前
zho发布了新的文献求助10
5秒前
5秒前
5秒前
Longer完成签到,获得积分10
6秒前
天天快乐应助ccty采纳,获得10
6秒前
欣喜俊驰发布了新的文献求助10
6秒前
聪明安露发布了新的文献求助10
7秒前
7秒前
psm发布了新的文献求助20
7秒前
昏睡的蟠桃应助Nozomi采纳,获得200
7秒前
科目三应助甜蜜的海露采纳,获得10
8秒前
带线一去不回完成签到,获得积分10
8秒前
doudou完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
iperper发布了新的文献求助30
8秒前
小马甲应助儒雅天磊采纳,获得10
9秒前
Li完成签到,获得积分10
9秒前
聪明的半仙完成签到 ,获得积分10
9秒前
嘉丽的后花园完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804522
求助须知:如何正确求助?哪些是违规求助? 3349389
关于积分的说明 10344195
捐赠科研通 3065478
什么是DOI,文献DOI怎么找? 1683099
邀请新用户注册赠送积分活动 808713
科研通“疑难数据库(出版商)”最低求助积分说明 764675