Exploring the contribution of joint angles and sEMG signals on joint torque prediction accuracy using LSTM-based deep learning techniques

接头(建筑物) 扭矩 计算机科学 人工智能 深度学习 机器学习 模式识别(心理学) 工程类 结构工程 物理 热力学
作者
Engin Kaya,Hande Argunsah
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:: 1-11
标识
DOI:10.1080/10255842.2024.2400318
摘要

Machine learning (ML) has been used to predict lower extremity joint torques from joint angles and surface electromyography (sEMG) signals. This study trained three bidirectional Long Short-Term Memory (LSTM) models, which utilize joint angle, sEMG, and combined modalities as inputs, using a publicly accessible dataset to estimate joint torques during normal walking and assessed the performance of models, that used specific inputs independently plus the accuracy of the joint-specific torque prediction. The performance of each model was evaluated using normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC). Each model's median scores for the PCC and nRMSE values were highly convergent and the bulk of the mean nRMSE values of all joints were less than 10%. The ankle joint torque was the most successfully predicted output, having a mean nRMSE of less than 9% for all models. The knee joint torque prediction has reached the highest accuracy with a mean nRMSE of 11% and the hip joint torque prediction of 10%. The PCC values of each model were significantly high and remarkably comparable for the ankle (∼ 0.98), knee (∼ 0.92), and hip (∼ 0.95) joints. The model obtained significantly close accuracy with single and combined input modalities, indicating that one of either input may be sufficient for predicting the torque of a particular joint, obviating the need for the other in certain contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助机智依丝采纳,获得10
刚刚
幽默莞发布了新的文献求助10
刚刚
1秒前
1秒前
思源应助FFF采纳,获得10
1秒前
1秒前
脖酱完成签到,获得积分10
1秒前
1秒前
wy关闭了wy文献求助
1秒前
2秒前
FashionBoy应助kingripple采纳,获得10
3秒前
可爱的彩虹应助跳跃的卿采纳,获得30
3秒前
3秒前
3秒前
卷卷完成签到,获得积分20
3秒前
lizhiqian2024发布了新的文献求助10
3秒前
3秒前
3秒前
RSC完成签到,获得积分10
3秒前
张欢欢完成签到,获得积分10
4秒前
4秒前
4秒前
哈哈王子发布了新的文献求助10
4秒前
4秒前
坦率金鱼发布了新的文献求助10
4秒前
美丽的凌蝶完成签到,获得积分10
6秒前
星辰大海应助hualin采纳,获得20
6秒前
oysp发布了新的文献求助100
6秒前
丘比特应助111采纳,获得10
6秒前
123hhhhhh发布了新的文献求助10
6秒前
nana完成签到,获得积分10
7秒前
酷波er应助彩云追月采纳,获得10
7秒前
wq完成签到,获得积分10
7秒前
taozi完成签到,获得积分0
7秒前
Sisyphus发布了新的文献求助10
7秒前
清新的妙松完成签到,获得积分10
8秒前
gujianhua完成签到,获得积分10
8秒前
RSC发布了新的文献求助10
8秒前
liuhaixu发布了新的文献求助10
8秒前
顾矜应助悦白采纳,获得10
8秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804701
求助须知:如何正确求助?哪些是违规求助? 3349568
关于积分的说明 10345175
捐赠科研通 3065662
什么是DOI,文献DOI怎么找? 1683192
邀请新用户注册赠送积分活动 808733
科研通“疑难数据库(出版商)”最低求助积分说明 764723