Exploring the contribution of joint angles and sEMG signals on joint torque prediction accuracy using LSTM-based deep learning techniques

接头(建筑物) 扭矩 计算机科学 人工智能 深度学习 机器学习 模式识别(心理学) 工程类 结构工程 物理 热力学
作者
Engin Kaya,Hande Argunsah
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:: 1-11 被引量:1
标识
DOI:10.1080/10255842.2024.2400318
摘要

Machine learning (ML) has been used to predict lower extremity joint torques from joint angles and surface electromyography (sEMG) signals. This study trained three bidirectional Long Short-Term Memory (LSTM) models, which utilize joint angle, sEMG, and combined modalities as inputs, using a publicly accessible dataset to estimate joint torques during normal walking and assessed the performance of models, that used specific inputs independently plus the accuracy of the joint-specific torque prediction. The performance of each model was evaluated using normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC). Each model's median scores for the PCC and nRMSE values were highly convergent and the bulk of the mean nRMSE values of all joints were less than 10%. The ankle joint torque was the most successfully predicted output, having a mean nRMSE of less than 9% for all models. The knee joint torque prediction has reached the highest accuracy with a mean nRMSE of 11% and the hip joint torque prediction of 10%. The PCC values of each model were significantly high and remarkably comparable for the ankle (∼ 0.98), knee (∼ 0.92), and hip (∼ 0.95) joints. The model obtained significantly close accuracy with single and combined input modalities, indicating that one of either input may be sufficient for predicting the torque of a particular joint, obviating the need for the other in certain contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzhu完成签到,获得积分10
刚刚
1秒前
77完成签到 ,获得积分10
4秒前
小西贝完成签到 ,获得积分10
4秒前
4秒前
5秒前
华仔应助耶啵采纳,获得10
6秒前
Pig-prodigy完成签到,获得积分10
6秒前
7秒前
凉薄少年应助闾丘志泽采纳,获得10
7秒前
9秒前
火星上雨珍完成签到,获得积分10
15秒前
奶油W发布了新的文献求助10
16秒前
李爱国应助畅快芝麻采纳,获得10
19秒前
21秒前
aaa发布了新的文献求助10
21秒前
Katie完成签到,获得积分10
23秒前
陆柏栎完成签到,获得积分10
23秒前
23秒前
空空完成签到,获得积分10
24秒前
25秒前
25秒前
黄文霜完成签到,获得积分10
26秒前
光亮白山完成签到 ,获得积分10
26秒前
26秒前
zgd发布了新的文献求助10
26秒前
GingerF应助李木子采纳,获得50
28秒前
小蘑菇应助[刘小婷]采纳,获得20
28秒前
yeah发布了新的文献求助10
29秒前
阿航完成签到,获得积分10
29秒前
29秒前
Lyhhh发布了新的文献求助10
30秒前
畅快芝麻发布了新的文献求助10
31秒前
33秒前
xfjy发布了新的文献求助10
33秒前
乐观思真完成签到,获得积分10
34秒前
所所应助闾丘志泽采纳,获得10
34秒前
张文博完成签到,获得积分10
35秒前
啦啦啦完成签到,获得积分10
35秒前
贤惠的白开水完成签到 ,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942868
求助须知:如何正确求助?哪些是违规求助? 3487974
关于积分的说明 11046209
捐赠科研通 3218565
什么是DOI,文献DOI怎么找? 1778987
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542