Towards Graph Prompt Learning: A Survey and Beyond

图形 计算机科学 数据科学 心理学 理论计算机科学
作者
Qingqing Long,Yuchen Yan,Peiyan Zhang,Chen Fang,Wentao Cui,Zhiyuan Ning,Meng Xiao,Ning Cao,Xiao Luo,Lingjun Xu,S. S. Jiang,Zheng Fang,Chong Chen,Xian‐Sheng Hua,Yuanchun Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.14520
摘要

Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability, enabling broad applications across diverse domains such as question answering, image recognition, and multimodal retrieval. This approach fully leverages the potential of large-scale pre-trained models, reducing downstream data requirements and computational costs while enhancing model applicability across various tasks. Graphs, as versatile data structures that capture relationships between entities, play pivotal roles in fields such as social network analysis, recommender systems, and biological graphs. Despite the success of pre-train and prompt learning paradigms in Natural Language Processing (NLP) and Computer Vision (CV), their application in graph domains remains nascent. In graph-structured data, not only do the node and edge features often have disparate distributions, but the topological structures also differ significantly. This diversity in graph data can lead to incompatible patterns or gaps between pre-training and fine-tuning on downstream graphs. We aim to bridge this gap by summarizing methods for alleviating these disparities. This includes exploring prompt design methodologies, comparing related techniques, assessing application scenarios and datasets, and identifying unresolved problems and challenges. This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications, including text-attributed graphs, molecules, proteins, and recommendation systems. Through this extensive review, we provide a foundational understanding of graph prompt learning, aiming to impact not only the graph mining community but also the broader Artificial General Intelligence (AGI) community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
细心的安双完成签到 ,获得积分10
3秒前
5秒前
5秒前
6秒前
小张完成签到 ,获得积分10
7秒前
边边角角落落完成签到,获得积分10
7秒前
DA发布了新的文献求助10
8秒前
兰是一个信仰完成签到,获得积分10
9秒前
沐槿发布了新的文献求助10
9秒前
活泼的寒安完成签到 ,获得积分10
9秒前
10秒前
10秒前
fenghy完成签到,获得积分10
11秒前
苗玉完成签到,获得积分10
12秒前
小鱼儿发布了新的文献求助10
15秒前
陈洋完成签到,获得积分10
20秒前
风中冰香完成签到,获得积分0
21秒前
leo完成签到,获得积分10
22秒前
吴开珍完成签到 ,获得积分10
23秒前
夏夜完成签到 ,获得积分10
25秒前
kxy完成签到,获得积分10
26秒前
ZONG完成签到,获得积分10
27秒前
逆袭者完成签到,获得积分10
29秒前
牛先生生完成签到,获得积分10
29秒前
MLi完成签到,获得积分10
30秒前
DA完成签到,获得积分10
30秒前
不是省油的灯完成签到,获得积分10
31秒前
ho应助清脆平安采纳,获得10
31秒前
31秒前
浩浩完成签到 ,获得积分10
33秒前
羊白玉完成签到 ,获得积分10
33秒前
和平完成签到 ,获得积分10
33秒前
丽莫莫完成签到,获得积分10
33秒前
知犯何逆完成签到 ,获得积分10
33秒前
酷酷蜗牛完成签到,获得积分10
36秒前
MrChew完成签到 ,获得积分10
36秒前
36秒前
BowieHuang应助嘻嘻哈哈采纳,获得70
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294096
求助须知:如何正确求助?哪些是违规求助? 4444039
关于积分的说明 13832022
捐赠科研通 4328044
什么是DOI,文献DOI怎么找? 2375902
邀请新用户注册赠送积分活动 1371202
关于科研通互助平台的介绍 1336276