ToxinPred 3.0: An improved method for predicting the toxicity of peptides

毒性 人工智能 机器学习 深度学习 计算机科学 化学 有机化学
作者
Anand Singh Rathore,Shubham Choudhury,Akanksha Arora,P. A. Tijare,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108926-108926 被引量:32
标识
DOI:10.1016/j.compbiomed.2024.108926
摘要

Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锋feng完成签到 ,获得积分10
2秒前
lvshiwen完成签到,获得积分10
3秒前
完美世界应助cuifeng采纳,获得30
3秒前
suiyi发布了新的文献求助10
4秒前
科研通AI5应助笨笨忘幽采纳,获得10
5秒前
7秒前
传奇3应助AKK采纳,获得10
7秒前
10秒前
HY完成签到 ,获得积分10
10秒前
李健应助leoluo采纳,获得10
11秒前
12秒前
深情安青应助宋晓静采纳,获得10
12秒前
Nancy发布了新的文献求助10
12秒前
Duke_ethan完成签到,获得积分10
15秒前
15秒前
tcf完成签到,获得积分10
16秒前
纪间完成签到,获得积分10
17秒前
卓初露完成签到 ,获得积分10
22秒前
23秒前
oysp完成签到,获得积分10
25秒前
28秒前
无花果应助upandcoming采纳,获得10
28秒前
GreenT完成签到,获得积分10
29秒前
LL发布了新的文献求助10
29秒前
_ban完成签到 ,获得积分10
29秒前
Solarenergy完成签到,获得积分0
33秒前
xieji发布了新的文献求助10
34秒前
小文殊完成签到 ,获得积分10
34秒前
34秒前
35秒前
35秒前
蓝桉发布了新的文献求助30
39秒前
科研通AI5应助fjyk采纳,获得30
39秒前
AKK发布了新的文献求助10
40秒前
leoluo发布了新的文献求助10
40秒前
zlx发布了新的文献求助10
40秒前
44秒前
duotianzhiyi完成签到,获得积分10
45秒前
48秒前
hcjxj完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522