Damage identification of steel bridge based on data augmentation and adaptive optimization neural network

桥(图论) 人工神经网络 卷积神经网络 稳健性(进化) 计算机科学 粒子群优化 超参数 机器学习 模式识别(心理学) 数据挖掘 人工智能 医学 生物化学 基因 内科学 化学
作者
Minshui Huang,Jianwei Zhang,Jun Li,Z.C. Deng,Jin Luo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (3): 1674-1699 被引量:53
标识
DOI:10.1177/14759217241255042
摘要

With the advancement of deep learning, data-driven structural damage identification (SDI) has shown considerable development. However, collecting vibration signals related to structural damage poses certain challenges, which can undermine the accuracy of the identification results produced by data-driven SDI methods in scenarios where data is scarce. This paper introduces an innovative approach to bridge SDI in a few-shot context by integrating an adaptive simulated annealing particle swarm optimization-convolutional neural network (ASAPSO-CNN) as the foundational framework, augmented by data enhancement techniques. Firstly, three specific types of noise are introduced to augment the source signals used for training. Subsequently, the source signals and augmented signals are recombined to construct a four-dimensional matrix as the input to the CNN, while defining the damage feature vector as the output. Secondly, a CNN is constructed to establish the mapping relationship between the input and output. Then, an adaptive fitness function is proposed that simultaneously considers the accuracy of SDI, model complexity, and training efficiency. The ASAPSO is employed to adaptively optimize the hyperparameters of the CNN. The proposed method is validated on an experimental model of a three-span continuous beam. It is compared with four other data-driven methods, demonstrating good effectiveness and robustness of SDI under cases of scarce data. Finally, the effectiveness of this SDI method is validated in a real-world case of a steel truss bridge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
酷波er应助开心青旋采纳,获得10
2秒前
Lucy1069089289完成签到,获得积分10
2秒前
2秒前
老黑完成签到,获得积分10
3秒前
Orange应助张博采纳,获得10
3秒前
共享精神应助candy采纳,获得10
3秒前
求真发布了新的文献求助30
4秒前
幸福雨发布了新的文献求助10
4秒前
科研通AI6应助寒冷雨竹采纳,获得10
4秒前
4秒前
zjh发布了新的文献求助10
4秒前
裴向雪完成签到,获得积分10
4秒前
五颜六色的白完成签到,获得积分10
4秒前
SciGPT应助WQ采纳,获得10
4秒前
852应助Jolin采纳,获得10
5秒前
领导范儿应助小武采纳,获得10
5秒前
tlggg发布了新的文献求助10
5秒前
Esther发布了新的文献求助10
5秒前
墨染发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
擦撒擦擦完成签到,获得积分10
5秒前
XuQI发布了新的文献求助10
5秒前
SMZ完成签到,获得积分10
5秒前
jz完成签到,获得积分20
5秒前
CZJ完成签到,获得积分10
6秒前
活力怜雪发布了新的文献求助10
6秒前
思源应助安白采纳,获得10
6秒前
6秒前
XNNI应助jama117采纳,获得20
6秒前
啦啦啦完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
Unstoppable完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724