亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:4
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
6秒前
Lam完成签到,获得积分20
8秒前
Lam发布了新的文献求助10
11秒前
Getlogger完成签到,获得积分10
17秒前
24秒前
26秒前
科研通AI2S应助科研通管家采纳,获得30
29秒前
Wells应助科研通管家采纳,获得10
29秒前
xiao发布了新的文献求助10
33秒前
计划完成签到,获得积分10
40秒前
fengfenghao完成签到,获得积分10
53秒前
1分钟前
1分钟前
Owen应助xiao采纳,获得10
1分钟前
1分钟前
爱思考的小笨笨完成签到,获得积分10
1分钟前
Omni完成签到,获得积分10
1分钟前
我是你爷爷完成签到,获得积分10
1分钟前
1分钟前
NexusExplorer应助smida采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
smida发布了新的文献求助20
2分钟前
Ava应助endlessloop采纳,获得10
2分钟前
小田完成签到,获得积分10
2分钟前
池雨完成签到 ,获得积分10
2分钟前
2分钟前
Wells应助科研通管家采纳,获得50
2分钟前
3分钟前
flyinthesky完成签到,获得积分10
3分钟前
cheng发布了新的文献求助10
3分钟前
3分钟前
HC完成签到,获得积分10
3分钟前
张晓祁完成签到,获得积分10
3分钟前
GIA完成签到,获得积分10
3分钟前
yueying完成签到,获得积分10
3分钟前
善学以致用应助顺颂时祺采纳,获得10
3分钟前
fsznc完成签到 ,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4470462
求助须知:如何正确求助?哪些是违规求助? 3930728
关于积分的说明 12195887
捐赠科研通 3584554
什么是DOI,文献DOI怎么找? 1970291
邀请新用户注册赠送积分活动 1008356
科研通“疑难数据库(出版商)”最低求助积分说明 902154