已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TCNN-KAN: Optimized CNN by Kolmogorov-Arnold Network and Pruning Techniques for sEMG Gesture Recognition

计算机科学 修剪 模式识别(心理学) 人工智能 手势识别 手势 语音识别 生物 农学
作者
Mohammed A. A. Al‐qaness,Sike Ni
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3467065
摘要

Surface electromyography (sEMG) is a non-invasive technique that records the electrical signals generated by muscle activity. sEMG signals are widely used in the field of biomedical and health informatics for diagnosing and monitoring neuromuscular disorders, as well as in fields such as motor control, rehabilitation, and human-computer interaction. In this paper, we propose a novel model called the Triple Convolutional Neural Network and Kolmogorov-Arnold Network (TCNN-KAN) for recognizing gesture signals based on sEMG. Our approach replaces the commonly used fully connected layer with the KAN, parameterizing it as a spline function to improve classification accuracy. Specifically, when using a KAN instead, generate the TCNN-KAN-1 model. When using two KAN layers, generate the TCNN-KAN-2 model and generate the TCNN-KAN-3 model when KAN replaces all fully connected layers. Firstly, to ensure the model learns universal features, we fuse gesture signals from different individuals and segment them to create uniform window sizes. Then, the processed signal is input into the basic convolution layer of different depths for training. In order to improve the accuracy, we convert the standard fully connected layer in the convolutional layer to the KAN layer so that it has a learnable activation function in weight. Finally, we introduce unstructured pruning to reduce computational complexity and minimize overfitting by removing channels with lower feature importance. We use three datasets, NinaPro DB1, NinaPro DB5, and CSL, for evaluation. The results show that on the TCNN-KAN-2 model, each dataset has achieved the highest accuracy. Specifically, when the pruning rates were 0.2, 0.1, and 0.4, the accuracy rates reached 98.38%, 93.81%, and 75.56%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜行完成签到 ,获得积分10
2秒前
Ming完成签到 ,获得积分10
2秒前
冷酷新柔完成签到,获得积分10
3秒前
热心金鱼发布了新的文献求助10
3秒前
LYL完成签到,获得积分10
3秒前
Stata@R完成签到,获得积分10
5秒前
西格完成签到 ,获得积分10
5秒前
ooouiia完成签到 ,获得积分10
6秒前
自渡完成签到 ,获得积分10
7秒前
alan完成签到 ,获得积分10
7秒前
10秒前
10秒前
10秒前
追寻夏烟完成签到 ,获得积分10
13秒前
共享精神应助小呆采纳,获得10
13秒前
blue完成签到 ,获得积分10
14秒前
孤独的AD钙完成签到,获得积分10
14秒前
14秒前
Cu完成签到 ,获得积分10
14秒前
类类完成签到,获得积分10
15秒前
DIDIDI发布了新的文献求助10
15秒前
景行行止完成签到 ,获得积分10
16秒前
momi完成签到 ,获得积分10
16秒前
朱zhu发布了新的文献求助10
16秒前
果子完成签到 ,获得积分10
17秒前
晚吟完成签到,获得积分20
18秒前
酷酷涫完成签到 ,获得积分0
18秒前
科研通AI2S应助难过板栗采纳,获得10
19秒前
kk完成签到 ,获得积分10
21秒前
沐雨篱边完成签到 ,获得积分10
23秒前
lidianji122完成签到,获得积分10
23秒前
23秒前
24秒前
雨rain完成签到 ,获得积分10
24秒前
左佐完成签到 ,获得积分10
24秒前
芝士大王完成签到 ,获得积分10
24秒前
Yacon发布了新的文献求助10
28秒前
lssable发布了新的文献求助10
28秒前
lidianji122发布了新的文献求助10
28秒前
Akim应助Yacon采纳,获得10
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804061
求助须知:如何正确求助?哪些是违规求助? 3348839
关于积分的说明 10340558
捐赠科研通 3065012
什么是DOI,文献DOI怎么找? 1682833
邀请新用户注册赠送积分活动 808537
科研通“疑难数据库(出版商)”最低求助积分说明 764456