亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer‐ and joint learning‐based dual‐domain networks for undersampled MRI segmentation

分割 计算机科学 人工智能 实时核磁共振成像 图像分割 计算机视觉 医学影像学 磁共振成像 模式识别(心理学) 尺度空间分割 掷骰子 迭代重建 特征(语言学) 医学 放射科 数学 语言学 哲学 几何学
作者
Jizhong Duan,Zhenyu Huang,Yunshuang Xie,Junfeng Wang,Yu Liu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17358
摘要

Abstract Background Recently, magnetic resonance imaging (MRI) has become a crucial medical imaging technology widely used in clinical practice. However, MRI faces challenges such as the lengthy acquisition time for k‐space data and the need for time‐consuming manual annotation by radiologists. Traditionally, these challenges have been addressed individually through undersampled MRI reconstruction and automatic segmentation algorithms. Whether undersampled MRI segmentation can be enhanced by treating undersampled MRI reconstruction and segmentation as an end‐to‐end task, trained simultaneously, rather than as serial tasks should be explored. Purpose We introduce a novel Transformer‐ and Joint Learning‐based Dual‐domain Network (TJLD‐Net) for undersampled MRI segmentation. Methods This method significantly enhances feature recognition in the segmentation process by fully utilizing the rich detail obtained during the image reconstruction phase. Consequently, the method can achieve precise and reliable image segmentation even with undersampled k‐space data. Additionally, it incorporates an attention mechanism for feature enhancement, which improves the representation of shared features by learning the contextual information in MR images. Results Simulation experiments demonstrate that the segmentation performance of TJLD‐Net on three datasets is significantly higher than that of the joint model (RecSeg) and six baseline models (where reconstruction and segmentation are regarded as serial tasks). On the CHAOS dataset, the Dice scores of TJLD‐Net are, on average, 9.87%, 2.17%, 1.90%, 1.80%, 9.60%, 0.80%, and 6.50% higher than those of the seven compared models. On the ATLAS challenge dataset, the average Dice scores of TJLD‐Net improve by 4.23%, 5.63%, 2.30%, 1.53%, 3.57%, 0.93%, and 6.60%. Similarly, on the SKM‐TEA dataset, the average Dice scores of TJLD‐Net improve by 4.73%, 12.80%, 14.83%, 8.67%, 4.53%, 11.60%, and 12.10%. The novel TJLD‐Net model provides a promising solution for undersampled MRI segmentation, overcoming the poor performance issues encountered by automated segmentation algorithms in low‐quality accelerated imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吴完成签到,获得积分10
3秒前
黑巧的融化完成签到 ,获得积分10
7秒前
13秒前
d22110652完成签到,获得积分10
14秒前
19秒前
所所应助天真咖啡豆采纳,获得10
31秒前
51秒前
54秒前
57秒前
CodeCraft应助天真咖啡豆采纳,获得10
1分钟前
1分钟前
1分钟前
共享精神应助天真咖啡豆采纳,获得10
1分钟前
小蘑菇应助冷静新烟采纳,获得10
2分钟前
2分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
我一进来就看到常威在打来福完成签到,获得积分10
3分钟前
田様应助hyhyhyhy采纳,获得10
3分钟前
Li应助科研通管家采纳,获得10
3分钟前
Li应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爆米花应助天真咖啡豆采纳,获得10
3分钟前
3分钟前
hyhyhyhy发布了新的文献求助10
3分钟前
3分钟前
Waris完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
NexusExplorer应助天真咖啡豆采纳,获得10
3分钟前
4分钟前
4分钟前
科研通AI5应助www采纳,获得10
4分钟前
科研通AI5应助www采纳,获得10
4分钟前
科研通AI5应助www采纳,获得10
4分钟前
隐形曼青应助www采纳,获得10
4分钟前
科研通AI5应助www采纳,获得10
4分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329313
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681298
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714