DualSyn: A dual-level feature interaction method to predict synergistic drug combinations

计算机科学 水准点(测量) 特征(语言学) 机器学习 任务(项目管理) 人工智能 药品 对偶(语法数字) 药物与药物的相互作用 医学 药理学 文学类 哲学 艺术 大地测量学 经济 管理 地理 语言学
作者
Zehui Chen,Zimeng Li,Xiangzhen Shen,Yuansheng Liu,Xuan Lin,Daojian Zeng,Xiangxiang Zeng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:257: 125065-125065 被引量:1
标识
DOI:10.1016/j.eswa.2024.125065
摘要

Drug combination therapy can reduce drug resistance and improve treatment efficacy, making it an increasingly promising cancer treatment method. Although existing computational methods have achieved significant success, predictions on unseen data remain a challenge. There are complex associations between drug pairs and cell lines, and existing models cannot capture more general feature interaction patterns among them, which hinders the ability of models to generalize from seen samples to unseen samples. To address this problem, we propose a dual-level feature interaction model called DualSyn to efficiently predict the synergy of drug combination therapy. This model first achieves interaction at the drug pair level through the drugs feature extraction module. We also designed two modules to further deepen the interaction at the drug pair and cell line level from two different perspectives. The high-order relation module is used to capture the high-order relationships among the three features, and the global information module focuses on preserving global information details. DualSyn not only improves the AUC by 2.15% compared with the state-of-the-art methods in the transductive task of the benchmark dataset, but also surpasses them in all four tasks under the inductive setting. Overall, DualSyn shows great potential in predicting and explaining drug synergistic therapies, providing a powerful new tool for future clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西发布了新的文献求助10
刚刚
善学以致用应助新手菜鸟采纳,获得10
1秒前
小马甲应助唐难破采纳,获得10
2秒前
脑洞疼应助沉静丹寒采纳,获得30
4秒前
打卡下班应助科研通管家采纳,获得10
5秒前
勿明应助科研通管家采纳,获得20
5秒前
田様应助科研通管家采纳,获得10
5秒前
CAOHOU应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
丘比特应助快醒醒采纳,获得10
8秒前
9秒前
椿iii完成签到 ,获得积分10
9秒前
脑洞疼应助可靠的寒风采纳,获得10
10秒前
宇哥发布了新的文献求助10
11秒前
慕青应助耀学菜菜采纳,获得10
11秒前
李健的小迷弟应助西西采纳,获得10
11秒前
情怀应助潘文博采纳,获得10
12秒前
12秒前
时光悠应助onlyone采纳,获得10
13秒前
13秒前
晓敏发布了新的文献求助10
13秒前
情怀应助莫名其妙的人采纳,获得30
13秒前
Jinyang完成签到 ,获得积分10
14秒前
14秒前
啦啦啦发布了新的文献求助10
15秒前
科研通AI5应助汤飞柏采纳,获得10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133144
求助须知:如何正确求助?哪些是违规求助? 3669973
关于积分的说明 11605085
捐赠科研通 3366574
什么是DOI,文献DOI怎么找? 1849609
邀请新用户注册赠送积分活动 913166
科研通“疑难数据库(出版商)”最低求助积分说明 828499