Quantitative Three-Dimensional Imaging Analysis of HfO2 Nanoparticles in Single Cells via Deep Learning Aided X-ray Nano-Computed Tomography

材料科学 纳米颗粒 X射线 计算机断层摄影术 纳米技术 纳米- 断层摄影术 光学 医学 物理 放射科 复合材料
作者
Zuoxin Xi,Haodong Yao,Tingfeng Zhang,Zongyi Su,Bing Wang,Weiyue Feng,Qiumei Pu,Lina Zhao
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (33): 22378-22389 被引量:5
标识
DOI:10.1021/acsnano.4c06953
摘要

It is crucial for understanding mechanisms of drug action to quantify the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution. Yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. The preferable method is using X-ray nano-computed tomography (Nano-CT) to observe and analyze drug distribution within cells, but it is time-consuming, requiring specialized expertise, and often subjective, particularly with ultrasmall metal nanoparticles (NPs). Furthermore, the accuracy of batch data analysis through conventional processing methods remains uncertain. In this study, we used radioenhancer ultrasmall HfO2 nanoparticles as a model to develop a modular and automated deep learning aided Nano-CT method for the localization quantitative analysis of ultrasmall metal NPs uptake in cancer cells. We have established an ultrasmall objects segmentation method for 3D Nano-CT images in single cells, which can highly sensitively analyze minute NPs and even ultrasmall NPs in single cells. We also constructed a localization quantitative analysis method, which may accurately segment the intracellularly bioavailable particles from those of the extracellular space and intracellular components and NPs. The high bioavailability of HfO2 NPs in tumor cells from deeper penetration in tumor tissue and higher tumor intracellular uptake provide mechanistic insight into HfO2 NPs as advanced radioenhancers in the combination of quantitative subcellular image analysis with the therapeutic effects of NPs on 3D tumor spheroids and breast cancer. Our findings unveil the substantial uptake rate and subcellular quantification of HfO2 NPs by the human breast cancer cell line (MCF-7). This revelation explicates the notable efficacy and safety profile of HfO2 NPs in tumor treatment. These findings demonstrate that this 3D imaging technique promoted by the deep learning algorithm has the potential to provide localization quantitative information about the 3D distributions of specific molecules at the nanoscale level. This study provides an approach for exploring the subcellular quantitative analysis of NPs in single cells, offering a valuable quantitative imaging tool for minute amounts or ultrasmall NPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uupp完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
活泼忆丹发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
D1fficulty完成签到,获得积分0
3秒前
朝夕完成签到 ,获得积分10
4秒前
慕青应助1101592875采纳,获得10
4秒前
5秒前
平淡青柏发布了新的文献求助10
5秒前
NexusExplorer应助啊啾采纳,获得30
6秒前
6秒前
OnlyHarbour发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
朝夕关注了科研通微信公众号
8秒前
9秒前
10秒前
活泼忆丹完成签到,获得积分10
10秒前
完美蛋挞发布了新的文献求助20
10秒前
古炮完成签到,获得积分10
11秒前
NN应助要减肥未来采纳,获得10
12秒前
源来是洲董完成签到,获得积分10
12秒前
风清扬发布了新的文献求助10
12秒前
史小霜发布了新的文献求助10
12秒前
Owen应助王子夜采纳,获得10
13秒前
绵绵发布了新的文献求助10
14秒前
扁舟灬发布了新的文献求助10
14秒前
平淡板凳应助愚蠢的牛马采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
lal发布了新的文献求助10
17秒前
17秒前
yndexpad发布了新的文献求助10
18秒前
19秒前
19秒前
Dore发布了新的文献求助10
20秒前
小二郎应助OnlyHarbour采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131