VWV-SSL: Carotid vessel-wall-volume segmentation via sequence structural similarity and augmentation consistency-based self-supervised learning

作者
Ran Zhou,Furong Wang,Jing Ding,Zhongwei Huang,Haitao Gan,Fumin Guo,Aaron Fenster
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-13
标识
DOI:10.1109/jbhi.2025.3637302
摘要

Vessel wall volume (VWV) is a critical three dimensional ultrasound metric used to assess the progression and regression of carotid atherosclerosis. Ac curate measurement of VWV requires the segmentation of the media-adventitia boundary (MAB) and the lumen intima boundary (LIB) of the carotid arteries. Although deep learning methods can automatically segment the MAB and LIB and quantify VWV, they rely heavily on a large dataset with annotated images for training, which is time consuming and labor-intensive. Self-supervised learning (SSL) provides a possible solution to this challenge. However, existing SSL methods do not consider the similarities in the image sequences of 3D ultrasound. This paper proposes a novel SSL algorithm, named VWV-SSL, for 3D carotid ultrasound (3DUS) image segmentation to generate VWV measurement. VWV-SSL utilizes the sequence structural similarity and strong-weak augmented feature consistency of carotid ultrasound images to conduct the self-supervised task, which enables the networks to better learn the feature presentations of the vessel in the self-supervised task training. We applied VWV-SSL on the widely used 3D U-Net and evaluated it on 1158 3D US (579 of the common carotid artery and 579 of the bifurcation) from250subjects.Comparedtobaselinenetworks,our SSL method showed a significant improvement in segmentation performance when trained on a small number of labeled images (n = 15, 45 and 75 subjects). Moreover, the performance of VWV-SSL was superior to that of state-of-art SSL algorithms. These results indicate that our method can improve the performance of 3D U-Net when trained on a small number of labeled images, suggesting that VWV SSL could be applied in clinical practice to monitor the progression of atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助ZXCCXZ采纳,获得10
刚刚
刚刚
清脆迎曼完成签到,获得积分10
1秒前
mym完成签到,获得积分10
2秒前
兰是一个信仰完成签到,获得积分10
4秒前
888应助西山菩提采纳,获得30
4秒前
天水张家辉完成签到,获得积分10
5秒前
01231009yrjz完成签到,获得积分10
5秒前
howudoin完成签到,获得积分10
5秒前
CYYDNDB完成签到 ,获得积分10
5秒前
CipherSage应助研友_nxwN7L采纳,获得10
6秒前
科研通AI6应助赵云采纳,获得10
6秒前
7秒前
害羞的振家完成签到,获得积分10
7秒前
诚心太君发布了新的文献求助10
7秒前
guhao完成签到 ,获得积分10
7秒前
情怀应助苏格拉底的嘲笑采纳,获得10
8秒前
李JJ完成签到,获得积分10
8秒前
9秒前
9秒前
开心的凝云完成签到 ,获得积分10
10秒前
多罗罗完成签到,获得积分10
10秒前
orange完成签到 ,获得积分10
10秒前
11秒前
废羊羊完成签到 ,获得积分10
12秒前
12秒前
Thunnus001完成签到 ,获得积分10
13秒前
明天好完成签到,获得积分10
13秒前
思源应助改长杉采纳,获得10
14秒前
安详的大象完成签到,获得积分10
15秒前
一口一个肥完成签到 ,获得积分10
16秒前
Bubble_bei完成签到 ,获得积分10
17秒前
18秒前
爱喝蜜桃乌龙完成签到,获得积分10
18秒前
优秀的离子键完成签到,获得积分10
19秒前
ZXCCXZ发布了新的文献求助10
19秒前
关键词完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
星辰大海应助hjm采纳,获得10
20秒前
moon完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109