阳极
材料科学
锌
涂层
图层(电子)
电解质
电偶阳极
电流密度
电化学
电极
电镀(地质)
化学工程
金属
箔法
枝晶(数学)
原位
纳米技术
复合材料
冶金
阴极保护
物理化学
气象学
工程类
化学
地质学
物理
量子力学
数学
地球物理学
几何学
作者
Qingqing Ren,Xinyue Tang,Kun He,Congmin Zhang,Wei Wang,Yaqing Guo,Zixuan Zhu,Xiaofen Xiao,Shun Wang,Jun Lü,Yifei Yuan
标识
DOI:10.1002/adfm.202312220
摘要
Abstract Suppressing dendrite growth in zinc (Zn) anodes for aqueous Zn batteries remains a significant challenge. Modifying the Zn/electrolyte interface stands out as one of the most promising strategies to tackle this problem. In this study, a nanometer‐thick ZnO coating layer with a uniform concave surface geometry is in situ constructed to modify the Zn anode for the first time. The chemical bond formed between the ZnO layer and the Zn foil enhances the structural stability of the synthesized ZnO modified‐Zn anode. Finite element simulations indicate that the ZnO coating layer facilitates uniform electric field distribution and zinc flux on the Zn electrode. In situ optical observations unveil how the modification interface regulates zinc plating behaviors on the Zn anode. Impressively, the symmetrical ZnO‐Zn cell displays a remarkable cycling stability of 1765 h at a current density of 5 mA cm −2 with an areal capacity of 1 mAh cm −2 . Even when subjected to a very high current density of 50 mA cm −2 , it maintains stable operation over 3800 cycles. This success highlights the immense application potential of the rationally tailored ZnO‐Zn anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI