In Situ Design of a Nanostructured Interface between NiMo and CuO Derived from Metal–Organic Framework for Enhanced Hydrogen Evolution in Alkaline Solutions

材料科学 过电位 催化作用 电催化剂 金属有机骨架 化学工程 电子顺磁共振 空位缺陷 无机化学 纳米技术 电化学 电极 物理化学 有机化学 结晶学 核磁共振 吸附 化学 工程类 物理
作者
Ebrahim Sadeghi,Sanaz Chamani,İpek Deniz Yıldırım,Emre Erdem,Naeimeh Sadat Peighambardoust,Umut Aydemir
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (8): 10078-10092 被引量:9
标识
DOI:10.1021/acsami.3c17588
摘要

Hydrogen shows great promise as a carbon-neutral energy carrier that can significantly mitigate global energy challenges, offering a sustainable solution. Exploring catalysts that are highly efficient, cost-effective, and stable for the hydrogen evolution reaction (HER) holds crucial importance. For this, metal–organic framework (MOF) materials have demonstrated extensive applicability as either a heterogeneous catalyst or catalyst precursor. Herein, a nanostructured interface between NiMo/CuO@C derived from Cu-MOF was designed and developed on nickel foam (NF) as a competent HER electrocatalyst in alkaline media. The catalyst exhibited a low overpotential of 85 mV at 10 mA cm–2 that rivals that of Pt/C (83 mV @ 10 mA cm–2). Moreover, the catalyst's durability was measured through chronopotentiometry at a constant current density of −30, −100, and −200 mA cm–2 for 50 h each in 1.0 M KOH. Such enhanced electrocatalytic performance could be ascribed to the presence of highly conductive C and Cu species, the facilitated electron transfer between the components because of the nanostructured interface, and abundant active sites as a result of multiple oxidation states. The existence of an ionized oxygen vacancy (Ov) signal was confirmed in all heat-treated samples through electron paramagnetic resonance (EPR) analysis. This revelation sheds light on the entrapment of electrons in various environments, primarily associated with the underlying defect structures, particularly vacancies. These trapped electrons play a crucial role in augmenting electron conductivity, thereby contributing to an elevated HER performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
有梦不觉人生寒完成签到,获得积分10
2秒前
年轻的馒头完成签到,获得积分10
3秒前
4秒前
7秒前
哈哈完成签到,获得积分10
7秒前
俊逸飞雪完成签到,获得积分10
7秒前
虚幻又莲发布了新的文献求助10
7秒前
7秒前
cdercder应助Yinkris采纳,获得10
9秒前
snow完成签到,获得积分10
11秒前
逆蝶发布了新的文献求助30
13秒前
顽主完成签到,获得积分10
13秒前
tt完成签到 ,获得积分10
13秒前
科研通AI5应助lxr2采纳,获得10
13秒前
阿枫完成签到 ,获得积分10
14秒前
调皮的沛萍完成签到,获得积分10
15秒前
星辰大海应助qiulong采纳,获得10
16秒前
16秒前
17秒前
可爱的函函应助zy采纳,获得10
17秒前
郭宇关注了科研通微信公众号
18秒前
科研通AI2S应助CYY采纳,获得10
18秒前
无限的寄真完成签到 ,获得积分10
18秒前
咖啡先生发布了新的文献求助10
20秒前
ShiRz发布了新的文献求助10
22秒前
领导范儿应助乙醇采纳,获得10
23秒前
辉子完成签到,获得积分10
25秒前
七曜发布了新的文献求助10
27秒前
吃花生酱的猫完成签到,获得积分10
27秒前
科研通AI5应助风趣的绮菱采纳,获得10
27秒前
28秒前
MM发布了新的文献求助10
29秒前
彭于晏应助CJPerformance采纳,获得10
30秒前
31秒前
小二郎应助康康XY采纳,获得10
32秒前
Jasper应助咖啡先生采纳,获得10
32秒前
33秒前
冰魂应助郭宇采纳,获得10
35秒前
wanci应助刘十六采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976