清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Energy consumption prediction and household feature analysis for different residential building types using machine learning and SHAP: Toward energy-efficient buildings

能源消耗 特征(语言学) 能量(信号处理) 消费(社会学) 建筑工程 计算机科学 环境经济学 机器学习 工程类 统计 经济 数学 社会学 社会科学 哲学 语言学 电气工程
作者
Xuerong Cui,Minhyun Lee,Choongwan Koo,Taehoon Hong
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:309: 113997-113997 被引量:11
标识
DOI:10.1016/j.enbuild.2024.113997
摘要

U.S. residential buildings account for a significant share of national energy consumption, highlighting their potential for energy-savings. Accurately predicting building energy consumption and understanding the impact of household features are, therefore, crucial for effective energy management, conservation efforts, and the development of energy policies. However, most existing models predicting U.S. residential energy consumption tend to focus on particular regions, limiting their generalizability across the entire country. In addition, many studies have overlooked the significant variations in the drivers of energy consumption between different types of residential buildings, resulting in a lack of separate prediction models for different residential building types. Moreover, when analyzing the impact of household features on building energy consumption, most studies provide a holistic measure of feature importance without sufficient interpretability. To address these gaps, this study uses the Residential Energy Consumption Survey dataset and three tree-based machine learning algorithms to develop separate energy use intensity prediction models for two typical U.S. residential building types. The results demonstrate that the LightGBM-based prediction model performs best for apartments, while the CatBoost-based prediction model performs best for single-family houses. Furthermore, the study applied SHapley Additive exPlanations to analyze the impact of household features on energy consumption. The results reveal that total square footage, space heating with natural gas, climate conditions, and building age are the common key features influencing energy use intensity for both building types. Based on these findings, this study provides general and targeted energy-saving recommendations for both building types, serving as a valuable guide for new building design and retrofitting of existing buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方白秋完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
33秒前
不秃燃的小老弟完成签到 ,获得积分10
39秒前
Shawn完成签到 ,获得积分10
51秒前
韩立发布了新的文献求助10
57秒前
量子星尘发布了新的文献求助10
58秒前
科研佟完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
我是老大应助kkk采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
li8888li8888完成签到 ,获得积分10
2分钟前
naczx完成签到,获得积分0
2分钟前
li8888lili8888完成签到 ,获得积分10
2分钟前
科研通AI5应助JoeJoe采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
CodeCraft应助幽默书白采纳,获得10
2分钟前
JoeJoe发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
JoeJoe完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
雷雷完成签到,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Eon完成签到 ,获得积分10
4分钟前
背后的大米完成签到,获得积分10
4分钟前
韩立发布了新的文献求助10
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
4分钟前
所所应助mingjiang采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
kkk发布了新的文献求助10
4分钟前
kkk完成签到,获得积分10
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868018
求助须知:如何正确求助?哪些是违规求助? 3410297
关于积分的说明 10667035
捐赠科研通 3134489
什么是DOI,文献DOI怎么找? 1729108
邀请新用户注册赠送积分活动 833178
科研通“疑难数据库(出版商)”最低求助积分说明 780620