亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy consumption prediction and household feature analysis for different residential building types using machine learning and SHAP: Toward energy-efficient buildings

能源消耗 特征(语言学) 能量(信号处理) 消费(社会学) 建筑工程 可解释性 高效能源利用 计算机科学 环境经济学 机器学习 工程类 统计 经济 数学 社会学 电气工程 哲学 语言学 社会科学
作者
Xuerong Cui,Minhyun Lee,Choongwan Koo,Taehoon Hong
出处
期刊:Energy and Buildings [Elsevier]
卷期号:309: 113997-113997 被引量:88
标识
DOI:10.1016/j.enbuild.2024.113997
摘要

U.S. residential buildings account for a significant share of national energy consumption, highlighting their potential for energy-savings. Accurately predicting building energy consumption and understanding the impact of household features are, therefore, crucial for effective energy management, conservation efforts, and the development of energy policies. However, most existing models predicting U.S. residential energy consumption tend to focus on particular regions, limiting their generalizability across the entire country. In addition, many studies have overlooked the significant variations in the drivers of energy consumption between different types of residential buildings, resulting in a lack of separate prediction models for different residential building types. Moreover, when analyzing the impact of household features on building energy consumption, most studies provide a holistic measure of feature importance without sufficient interpretability. To address these gaps, this study uses the Residential Energy Consumption Survey dataset and three tree-based machine learning algorithms to develop separate energy use intensity prediction models for two typical U.S. residential building types. The results demonstrate that the LightGBM-based prediction model performs best for apartments, while the CatBoost-based prediction model performs best for single-family houses. Furthermore, the study applied SHapley Additive exPlanations to analyze the impact of household features on energy consumption. The results reveal that total square footage, space heating with natural gas, climate conditions, and building age are the common key features influencing energy use intensity for both building types. Based on these findings, this study provides general and targeted energy-saving recommendations for both building types, serving as a valuable guide for new building design and retrofitting of existing buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助yy采纳,获得10
6秒前
6秒前
黄诺雪完成签到,获得积分10
7秒前
黄诺雪发布了新的文献求助10
10秒前
ZX发布了新的文献求助10
13秒前
15秒前
CodeCraft应助白兰雪花膏采纳,获得20
15秒前
机灵的衬衫完成签到 ,获得积分10
23秒前
lxm完成签到,获得积分10
27秒前
28秒前
32秒前
lxm发布了新的文献求助10
33秒前
充电宝应助Zyc采纳,获得10
33秒前
Owen应助狂野傲南采纳,获得10
34秒前
Harrison完成签到,获得积分10
34秒前
初一完成签到 ,获得积分10
37秒前
38秒前
39秒前
浮游应助lxm采纳,获得10
42秒前
44秒前
狂野傲南发布了新的文献求助10
45秒前
嘻嘻哈哈应助科研通管家采纳,获得10
46秒前
嘻嘻哈哈应助科研通管家采纳,获得10
46秒前
46秒前
zb发布了新的文献求助10
47秒前
qjm发布了新的文献求助30
49秒前
50秒前
狂野傲南完成签到,获得积分10
52秒前
浮游应助zb采纳,获得10
1分钟前
NexusExplorer应助zb采纳,获得10
1分钟前
1分钟前
明亮的青旋完成签到 ,获得积分10
1分钟前
年轻小白菜完成签到 ,获得积分10
1分钟前
1分钟前
xiw完成签到,获得积分10
1分钟前
MTF完成签到 ,获得积分10
1分钟前
1分钟前
明天就爆炸完成签到,获得积分10
1分钟前
Harrison发布了新的文献求助10
1分钟前
Zyc发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323514
求助须知:如何正确求助?哪些是违规求助? 4464801
关于积分的说明 13893602
捐赠科研通 4356293
什么是DOI,文献DOI怎么找? 2392731
邀请新用户注册赠送积分活动 1386283
关于科研通互助平台的介绍 1356264