iAMP-Attenpred: a novel antimicrobial peptide predictor based on BERT feature extraction method and CNN-BiLSTM-Attention combination model

计算机科学 人工智能 特征(语言学) 抗菌肽 鉴定(生物学) 领域(数学) 特征提取 机器学习 深度学习 图层(电子) 生物 化学 哲学 有机化学 纯数学 植物 生物化学 语言学 数学
作者
Wenxuan Xing,Jie Zhang,Chen Li,Yujia Huo,Gaifang Dong
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1) 被引量:11
标识
DOI:10.1093/bib/bbad443
摘要

Abstract As a kind of small molecule protein that can fight against various microorganisms in nature, antimicrobial peptides (AMPs) play an indispensable role in maintaining the health of organisms and fortifying defenses against diseases. Nevertheless, experimental approaches for AMP identification still demand substantial allocation of human resources and material inputs. Alternatively, computing approaches can assist researchers effectively and promptly predict AMPs. In this study, we present a novel AMP predictor called iAMP-Attenpred. As far as we know, this is the first work that not only employs the popular BERT model in the field of natural language processing (NLP) for AMPs feature encoding, but also utilizes the idea of combining multiple models to discover AMPs. Firstly, we treat each amino acid from preprocessed AMPs and non-AMP sequences as a word, and then input it into BERT pre-training model for feature extraction. Moreover, the features obtained from BERT method are fed to a composite model composed of one-dimensional CNN, BiLSTM and attention mechanism for better discriminating features. Finally, a flatten layer and various fully connected layers are utilized for the final classification of AMPs. Experimental results reveal that, compared with the existing predictors, our iAMP-Attenpred predictor achieves better performance indicators, such as accuracy, precision and so on. This further demonstrates that using the BERT approach to capture effective feature information of peptide sequences and combining multiple deep learning models are effective and meaningful for predicting AMPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
油条发布了新的文献求助20
1秒前
fenghuo完成签到,获得积分10
2秒前
2秒前
隐形曼青应助miscell采纳,获得30
3秒前
科研通AI5应助Chillym采纳,获得10
3秒前
5秒前
穆亦擎发布了新的文献求助10
6秒前
2022彧发布了新的文献求助10
6秒前
李瑾发布了新的文献求助10
8秒前
8秒前
风中的元菱完成签到,获得积分10
9秒前
泊頔发布了新的文献求助10
9秒前
张俊扬发布了新的文献求助10
11秒前
田様应助xh采纳,获得10
11秒前
丘比特应助Estrella采纳,获得30
14秒前
泊頔完成签到,获得积分10
15秒前
15秒前
卷卷发布了新的文献求助10
16秒前
pangpang完成签到,获得积分10
16秒前
19秒前
华仔应助OP采纳,获得10
20秒前
英勇的沛春完成签到 ,获得积分10
21秒前
wyx发布了新的文献求助10
22秒前
大模型应助Jal578采纳,获得10
22秒前
ccx981166完成签到,获得积分10
25秒前
xh发布了新的文献求助10
26秒前
拙青发布了新的文献求助10
27秒前
隐形曼青应助恩雁采纳,获得10
28秒前
彩色德天发布了新的文献求助10
31秒前
拙青完成签到,获得积分10
36秒前
如意数据线完成签到 ,获得积分10
38秒前
打打应助张俊扬采纳,获得10
38秒前
SYLH应助wyx采纳,获得10
38秒前
忐忑的果汁完成签到,获得积分10
41秒前
43秒前
Lucas应助蓝桉采纳,获得10
43秒前
充电宝应助温柔的白秋采纳,获得10
44秒前
44秒前
麦兜完成签到 ,获得积分10
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811277
求助须知:如何正确求助?哪些是违规求助? 3355696
关于积分的说明 10377245
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766762