A comprehensive survey of machine remaining useful life prediction approaches based on pattern recognition: Taxonomy and challenges

分类学(生物学) 计算机科学 人工智能 机器学习 数据科学 生物 生态学
作者
Jianghong Zhou,Jiahong Yang,Qian Qi,Yi Qin
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad2bcc
摘要

Abstract Predictive maintenance (PdM) is currently the most cost-effective maintenance method for industrial equipment, offering improved safety and availability of mechanical assets. A crucial component of PdM is the remaining useful life (RUL) prediction for machines, which has garnered increasing attention. With the rapid advancements in industrial Internet of Things (IoT) and artificial intelligence (AI) technologies, RUL prediction methods, particularly those based on pattern recognition (PR) technology, have made significant progress. However, a comprehensive review that systematically analyzes and summarizes these state-of-the-art PR-based prognostic methods is currently lacking. To address this gap, this paper presents a comprehensive review of PR-based RUL prediction methods. Firstly, it summarizes commonly used evaluation indicators based on accuracy metrics, prediction confidence metrics, and prediction stability metrics. Secondly, it provides a comprehensive analysis of typical machine learning methods and deep learning networks employed in RUL prediction. Furthermore, it delves into cutting-edge techniques, including advanced network models and frontier learning theories in RUL prediction. Finally, the paper concludes by discussing the current main challenges and prospects in the field. The intended audience of this article includes practitioners and researchers involved in machinery PdM, aiming to provide them with essential foundational knowledge and a technical overview of the subject matter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yyj采纳,获得10
刚刚
2秒前
笑点低发布了新的文献求助10
2秒前
华仔应助青柠采纳,获得10
3秒前
JamesPei应助鲤鱼寒荷采纳,获得10
3秒前
动漫大师发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
研友_ngKdbn发布了新的文献求助10
5秒前
6秒前
龙觅星峰发布了新的文献求助10
6秒前
6秒前
月亮代表我的心完成签到,获得积分10
7秒前
小宋完成签到,获得积分10
7秒前
越宝发布了新的文献求助10
7秒前
9秒前
9秒前
DreamLly发布了新的文献求助10
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
一苇以航应助科研通管家采纳,获得30
10秒前
桐桐应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
Akim应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
南北发布了新的文献求助10
11秒前
11秒前
11秒前
唔食鸡蛋黄完成签到,获得积分10
11秒前
单薄电话发布了新的文献求助10
12秒前
无风完成签到,获得积分10
13秒前
13秒前
yyj完成签到,获得积分20
13秒前
鲤鱼寒荷发布了新的文献求助10
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814123
求助须知:如何正确求助?哪些是违规求助? 3358369
关于积分的说明 10394045
捐赠科研通 3075673
什么是DOI,文献DOI怎么找? 1689451
邀请新用户注册赠送积分活动 812897
科研通“疑难数据库(出版商)”最低求助积分说明 767404