Full-length radiograph based automatic musculoskeletal modeling using convolutional neural network

骨盆 股骨 分割 卷积神经网络 胫骨 射线照相术 计算机科学 均方误差 人工智能 Sørensen–骰子系数 算法 数学 解剖 口腔正畸科 模式识别(心理学) 医学 图像分割 放射科 统计 外科
作者
Junqing Wang,Shiqi Li,Zitong Sun,Qicheng Lao,Bin Shen,Kang Li,Yong Nie
出处
期刊:Journal of Biomechanics [Elsevier BV]
卷期号:166: 112046-112046 被引量:1
标识
DOI:10.1016/j.jbiomech.2024.112046
摘要

Full-length radiographs contain information from which many anatomical parameters of the pelvis, femur, and tibia may be derived, but only a few anatomical parameters are used for musculoskeletal modeling. This study aimed to develop a fully automatic algorithm to extract anatomical parameters from full-length radiograph to generate a musculoskeletal model that is more accurate than linear scaled one. A U-Net convolutional neural network was trained to segment the pelvis, femur, and tibia from the full-length radiograph. Eight anatomic parameters (six for length and width, two for angles) were automatically extracted from the bone segmentation masks and used to generate the musculoskeletal model. Sørensen-Dice coefficient was used to quantify the consistency of automatic bone segmentation masks with manually segmented labels. Maximum distance error, root mean square (RMS) distance error and Jaccard index (JI) were used to evaluate the geometric accuracy of the automatically generated pelvis, femur and tibia models versus CT bone models. Mean Sørensen-Dice coefficients for the pelvis, femur and tibia 2D segmentation masks were 0.9898, 0.9822 and 0.9786, respectively. The algorithm-driven bone models were closer to the 3D CT bone models than the scaled generic models in geometry, with significantly lower maximum distance error (28.3 % average decrease from 24.35 mm) and RMS distance error (28.9 % average decrease from 9.55 mm) and higher JI (17.2 % average increase from 0.46) (P < 0.001). The algorithm-driven musculoskeletal modeling (107.15 ± 10.24 s) was faster than the manual process (870.07 ± 44.79 s) for the same full-length radiograph. This algorithm provides a fully automatic way to generate a musculoskeletal model from full-length radiograph that achieves an approximately 30 % reduction in distance errors, which could enable personalized musculoskeletal simulation based on full-length radiograph for large scale OA populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
第五明月发布了新的文献求助10
4秒前
三七完成签到,获得积分10
5秒前
tom发布了新的文献求助10
6秒前
大方远望完成签到,获得积分10
8秒前
Jasper应助夏睿阳采纳,获得10
9秒前
小羊同学完成签到,获得积分10
10秒前
丘比特应助yu采纳,获得10
10秒前
Yuchaoo完成签到,获得积分10
11秒前
12秒前
XX完成签到,获得积分10
13秒前
Borridou完成签到,获得积分20
14秒前
15秒前
16秒前
杞人忧天完成签到,获得积分10
17秒前
鸣笛应助sfsfes采纳,获得10
18秒前
李雅芳关注了科研通微信公众号
19秒前
充电宝应助可研小冲采纳,获得10
19秒前
夏睿阳发布了新的文献求助10
20秒前
20秒前
友好听云发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
溺水的鸭子完成签到,获得积分10
23秒前
stevexyk应助伶俐鸽子采纳,获得10
23秒前
yanyifan完成签到,获得积分10
23秒前
24秒前
24秒前
研友_VZG7GZ应助lemon采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
26秒前
Owen应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
CipherSage应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897131
求助须知:如何正确求助?哪些是违规求助? 3440984
关于积分的说明 10819523
捐赠科研通 3165972
什么是DOI,文献DOI怎么找? 1749073
邀请新用户注册赠送积分活动 845104
科研通“疑难数据库(出版商)”最低求助积分说明 788429