Exploring the power of convolutional neural networks for encrypted industrial protocols recognition

计算机科学 加密 卷积神经网络 人工智能 协议(科学) 网络数据包 深度学习 机器学习 深包检验 密码协议 计算机网络 数据挖掘 计算机安全 密码学 医学 替代医学 病理
作者
Eva Holasová,Petr Blažek,Radek Fujdiak,Jan Mašek,Jiří Mišurec
出处
期刊:Sustainable Energy, Grids and Networks [Elsevier BV]
卷期号:38: 101269-101269
标识
DOI:10.1016/j.segan.2023.101269
摘要

The main objective of this paper is to classify unencrypted and encrypted industrial protocols using deep learning, especially Convolutional Neural Networks. Protocol recognition is important for network security and network analysis. Overall knowledge of industrial protocols and networks is crucial, especially in operational technologies. Five industrial protocol standards are under investigation, namely IEC 60870-5-104, IEC 61850 (MMS, GOOSE, SV) and Modbus/TCP. It is also investigated whether the selected protocols can be recognized in their encrypted version. Furthermore, it is investigated whether this encrypted traffic is recognizable from the use of VPN technology. Three convolutional neural network models were trained to recognize industrial protocols. These networks outperform traditional machine learning in pattern recognition in several areas of classification. By converting the captured traffic into image data that convolutional neural networks work with, differences in the encrypted traffic of different industrial protocols can be recognized. Three scenarios (1D, 2D, PKT) are presented using convolutional neural network models with 1D and 2D architectures. Training, testing and validation data are used to verify each scenario. An accuracy of 96-97 % is achieved for the recognition of unencrypted and encrypted industrial protocols. According to the results, 2D convolutional neural network model is faster than 1D and PKT models. The 1D and 2D models are suitable for use in protocol specific networks. Another application of these models can be anomaly detection in these networks. The PKT model is useful in networks with multiple industry protocols because it can evaluate network traffic on a packet-by-packet basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿kkk发布了新的文献求助10
刚刚
科研通AI5应助wen采纳,获得10
2秒前
科研通AI5应助猪猪hero采纳,获得10
2秒前
2秒前
2秒前
3秒前
JY发布了新的文献求助10
3秒前
医学生Mavis完成签到,获得积分10
3秒前
HEAUBOOK应助YY采纳,获得10
3秒前
搁浅发布了新的文献求助10
4秒前
yy发布了新的文献求助30
4秒前
IMxYang应助one_more_thing采纳,获得10
4秒前
毕业毕业完成签到,获得积分20
4秒前
多发论文完成签到,获得积分10
5秒前
Cu完成签到 ,获得积分10
6秒前
6秒前
Alex应助xiaowei采纳,获得20
7秒前
麻辣香锅发布了新的文献求助10
8秒前
阿kkk完成签到,获得积分10
8秒前
8秒前
小城故事完成签到,获得积分10
8秒前
执着静竹发布了新的文献求助10
9秒前
Akim应助陌路孤星采纳,获得10
10秒前
啊哈完成签到,获得积分10
10秒前
10秒前
忙里偷闲完成签到,获得积分10
11秒前
YY完成签到,获得积分20
11秒前
贪玩丸子完成签到 ,获得积分10
12秒前
wanci应助Auditor采纳,获得10
12秒前
气筒发布了新的文献求助10
12秒前
ada完成签到,获得积分10
14秒前
leo发布了新的文献求助30
14秒前
14秒前
Singularity应助依克采纳,获得10
14秒前
香蕉觅云应助此时此刻采纳,获得10
15秒前
16秒前
丘比特应助麦子采纳,获得10
16秒前
17秒前
18秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304