亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-Based Multimodal Emotion Recognition: A Machine Learning Perspective

透视图(图形) 脑电图 计算机科学 人工智能 语音识别 情绪识别 模式识别(心理学) 心理学 神经科学
作者
Huan Liu,Tianyu Lou,Yuzhe Zhang,Yixiao Wu,Yang Xiao,Christian S. Jensen,Dalin Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-29 被引量:52
标识
DOI:10.1109/tim.2024.3369130
摘要

Emotion, a fundamental trait of human beings, plays a pivotal role in shaping aspects of our lives, including our cognitive and perceptual abilities. Hence, emotion recognition also is central to human communication, decision-making, learning, and other activities. Emotion recognition from electroencephalography (EEG) signals has garnered substantial attention due to advantages such as noninvasiveness, high speed, and high temporal resolution; driven also by the complementarity between EEG and other physiological signals at revealing emotions, recent years have seen a surge in proposals for EEG-based multimodal emotion recognition (EMER). In short, EEG-based emotion recognition is a promising technology in medical measurements and health monitoring. While reviews exist, which explore emotion recognition from multimodal physiological signals, they focus mostly on general combinations of modalities and do not emphasize studies that center on EEG as the fundamental modality. Furthermore, existing reviews take a methodology-agnostic perspective, primarily concentrating on the biomedical basis or experimental paradigms, thereby giving little attention to the methodological characteristics unique to this field. To address these gaps, we present a comprehensive review of current EMER studies, with a focus on multimodal machine learning models. The review is structured around three key aspects: multimodal feature representation learning, multimodal physiological signal fusion, and incomplete multimodal learning models. In doing so, the review sheds light on the advances and challenges in the field of EMER, thus offering researchers who are new to the field a holistic understanding. The review also aims to provide valuable insight that may guide new research in this exciting and rapidly evolving field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恋晨完成签到 ,获得积分10
13秒前
14秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
39秒前
Criminology34举报fancy求助涉嫌违规
52秒前
cen完成签到,获得积分10
56秒前
ljx完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
icoo发布了新的文献求助10
1分钟前
1分钟前
NexusExplorer应助ceeray23采纳,获得20
1分钟前
高高完成签到 ,获得积分10
1分钟前
今后应助ceeray23采纳,获得20
1分钟前
李爱国应助ceeray23采纳,获得20
1分钟前
FashionBoy应助ceeray23采纳,获得20
1分钟前
上官若男应助ceeray23采纳,获得20
1分钟前
徐对话关注了科研通微信公众号
1分钟前
向前发布了新的文献求助10
1分钟前
LHL驳回了陈军应助
1分钟前
1分钟前
科研通AI6应助icoo采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
SNOWSUMMER完成签到,获得积分10
1分钟前
徐对话发布了新的文献求助30
2分钟前
华仔应助SNOWSUMMER采纳,获得10
2分钟前
现代火车发布了新的文献求助10
2分钟前
2分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
2分钟前
完美世界应助柠檬采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
柠檬发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316