清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

UANet: An Uncertainty-Aware Network for Building Extraction From Remote Sensing Images

计算机科学 数据挖掘 编码器 特征提取 像素 深度学习 代表(政治) 骨料(复合) 特征(语言学) 人工智能 机器学习 模式识别(心理学) 操作系统 复合材料 法学 政治学 政治 材料科学 哲学 语言学
作者
Jiepan Li,Wei He,Weinan Cao,Liangpei Zhang,Hongyan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:21
标识
DOI:10.1109/tgrs.2024.3361211
摘要

Building extraction aims to segment building pixels from remote sensing images and plays an essential role in many applications, such as city planning and urban dynamic monitoring. Over the past few years, deep learning methods with encoder–decoder architectures have achieved remarkable performance due to their powerful feature representation capability. Nevertheless, due to the varying scales and styles of buildings, conventional deep learning models always suffer from uncertain predictions and cannot accurately distinguish the complete footprints of the building from the complex distribution of ground objects, leading to a large degree of omission and commission. In this paper, we realize the importance of uncertain prediction and propose a novel and straightforward Uncertainty-Aware Network (UANet) to alleviate this problem. Specifically, we first apply a general encoder–decoder network to obtain a building extraction map with relatively high uncertainty. Second, in order to aggregate the useful information in the highest-level features, we design a Prior Information Guide Module to guide the highest-level features in learning the prior information from the conventional extraction map. Third, based on the uncertain extraction map, we introduce an Uncertainty Rank Algorithm to measure the uncertainty level of each pixel belonging to the foreground and the background. We further combine this algorithm with the proposed Uncertainty-Aware Fusion Module to facilitate level-by-level feature refinement and obtain the final refined extraction map with low uncertainty. To verify the performance of our proposed UANet, we conduct extensive experiments on three public building datasets, including the WHU building dataset, the Massachusetts building dataset, and the Inria aerial image dataset. Results demonstrate that the proposed UANet outperforms other state-of-the-art algorithms by a large margin. The source code of the proposed UANet is available at https://github.com/Henryjiepanli/Uncertainty-aware-Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
鹿茸与共发布了新的文献求助10
10秒前
Jayzie完成签到 ,获得积分10
24秒前
xinjiasuki完成签到 ,获得积分10
39秒前
CipherSage应助范范采纳,获得10
45秒前
1分钟前
范范发布了新的文献求助10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
希望天下0贩的0应助范范采纳,获得10
1分钟前
Sunny完成签到,获得积分10
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
yzhilson完成签到 ,获得积分10
2分钟前
寻桃阿玉完成签到 ,获得积分10
2分钟前
Much完成签到 ,获得积分10
4分钟前
恶恶么v完成签到,获得积分10
4分钟前
5分钟前
666发布了新的文献求助10
5分钟前
5分钟前
英姑应助调皮醉波采纳,获得10
5分钟前
ma发布了新的文献求助10
5分钟前
科研通AI5应助大头采纳,获得10
6分钟前
6分钟前
6分钟前
范范发布了新的文献求助10
7分钟前
大头发布了新的文献求助10
7分钟前
7分钟前
调皮醉波发布了新的文献求助10
7分钟前
sowhat完成签到 ,获得积分10
7分钟前
田様应助666采纳,获得10
7分钟前
调皮醉波完成签到,获得积分10
7分钟前
inRe完成签到,获得积分10
8分钟前
xwl9955完成签到 ,获得积分10
8分钟前
Joseph_sss完成签到 ,获得积分10
8分钟前
8分钟前
无奈的萍完成签到,获得积分10
9分钟前
Forever完成签到,获得积分10
10分钟前
天边的云彩完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827299
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456593
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251