HSH-UNet: Hybrid selective high order interactive U-shaped model for automated skin lesion segmentation

计算机科学 人工智能 分割 卷积神经网络 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Renkai Wu,Hongli Lv,Pengchen Liang,Xiaoxu Cui,Qing Chang,Xuan Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107798-107798 被引量:41
标识
DOI:10.1016/j.compbiomed.2023.107798
摘要

The use of computer-assisted clinical dermatologists to diagnose skin diseases is an important aid. And computer-assisted techniques mainly use deep neural networks. Recently, the proposal of higher-order spatial interaction operations in deep neural networks has attracted a lot of attention. It has the advantages of both convolution and transformers, and additionally has the advantages of efficient, extensible and translation-equivariant. However, the selection of the interaction order in higher-order interaction operations requires tedious manual selection of a suitable interaction order. In this paper, a hybrid selective higher-order interaction U-shaped model HSH-UNet is proposed to solve the problem that requires manual selection of the order. Specifically, we design a hybrid selective high-order interaction module HSHB embedded in the U-shaped model. The HSHB adaptively selects the appropriate order for the interaction operation channel-by-channel under the computationally obtained guiding features. The hybrid order interaction also solves the problem of fixed order of interaction at each level. We performed extensive experiments on three public skin lesion datasets and our own dataset to validate the effectiveness of our proposed method. The ablation experiments demonstrate the effectiveness of our hybrid selective higher order interaction module. The comparison with state-of-the-art methods also demonstrates the superiority of our proposed HSH-UNet performance. The code is available at https://github.com/wurenkai/HSH-UNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助wkkky采纳,获得10
1秒前
3秒前
4秒前
Chen发布了新的文献求助10
5秒前
7秒前
罗余晴发布了新的文献求助10
7秒前
8秒前
斯文败类应助妙蛙采纳,获得10
8秒前
8秒前
CDEFGAB完成签到 ,获得积分10
9秒前
思源应助peng采纳,获得10
12秒前
Dandanhuang发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
zz完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
19秒前
20秒前
21秒前
妙蛙发布了新的文献求助10
22秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
Jessica发布了新的文献求助10
23秒前
24秒前
收皮皮完成签到 ,获得积分10
24秒前
25秒前
de完成签到,获得积分20
26秒前
量子星尘发布了新的文献求助10
28秒前
hai完成签到,获得积分10
28秒前
peng发布了新的文献求助10
28秒前
神锋天下发布了新的文献求助10
29秒前
赵巍完成签到,获得积分20
29秒前
所所应助hua采纳,获得10
29秒前
32秒前
赘婿应助ive张元英爱科研采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777597
求助须知:如何正确求助?哪些是违规求助? 5634534
关于积分的说明 15446288
捐赠科研通 4909506
什么是DOI,文献DOI怎么找? 2641796
邀请新用户注册赠送积分活动 1589749
关于科研通互助平台的介绍 1544178