Noise-robust adaptive feature mode decomposition method for accurate feature extraction in rotating machinery fault diagnosis

噪音(视频) 稳健性(进化) 模式识别(心理学) 初始化 断层(地质) 控制理论(社会学) 人工智能 计算机科学 特征提取 振动 降噪 工程类 声学 物理 地质学 图像(数学) 地震学 基因 化学 生物化学 程序设计语言 控制(管理)
作者
Yuyang Chen,Zhiwei Mao,Xiuqun Hou,Zhaoguang Zhang,Jinjie Zhang,Zhinong Jiang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:211: 111213-111213 被引量:17
标识
DOI:10.1016/j.ymssp.2024.111213
摘要

Rotating machinery typically consists of multiple rotating components, and its fault signals contain not only periodic impulse components caused by local defects but also periodic noise components generated by the normal operation of other rotating parts. Especially in the case of compound faults, the vibration signals exhibit the characteristics of simultaneous coupling of multiple periodic components and multiple pulse components, greatly affecting the accuracy of compound fault diagnosis. In order to accurately separate and extract individual fault components from the rotating machinery's compound fault signals under strong periodic noise interference, this paper proposes a noise-robust adaptive feature mode decomposition method for compound fault diagnosis in rotating machinery. In addressing the challenge of existing decomposition methods, which heavily rely on accurate fault period estimation and initialization of decomposition number, an efficient strategy has been developed within the proposed method. This strategy remains effective even under intense periodic disturbances by accurately pinpointing the resonance bands induced by faults. It simultaneously acquires the essential prior knowledge necessary for mode decomposition, resolving the issue of prevailing fault period estimation methods being prone to failure in the presence of strong periodic noise. Furthermore, a feature mode decomposition method with the second-order indicators of cyclostationarity as the objective function is introduced. This, coupled with the devised parameter optimization strategy, facilitates precise decomposition of compound fault components in the presence of strong periodic noise. Finally, the robustness of the proposed method against periodic noise and its outstanding ability to extract compound fault features undergo validation through simulations and experiments, highlighting its potential for advancement in the field of rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tayyao发布了新的文献求助10
1秒前
linkman应助SSS采纳,获得30
1秒前
1秒前
2秒前
linkman应助菠菜采纳,获得200
2秒前
无敌学术王王完成签到,获得积分10
2秒前
JamesPei应助小橘子2022采纳,获得10
3秒前
3秒前
3秒前
科研通AI6应助tkx是流氓兔采纳,获得10
4秒前
5秒前
Iris完成签到,获得积分10
5秒前
NexusExplorer应助大白锰采纳,获得10
6秒前
FashionBoy应助diyi采纳,获得10
6秒前
6秒前
萤火发布了新的文献求助10
6秒前
圆锥香蕉举报尚永婧求助涉嫌违规
7秒前
赵小花发布了新的文献求助10
7秒前
现代的中道完成签到,获得积分10
7秒前
李健的小迷弟应助wxj采纳,获得10
7秒前
8秒前
zedhumble完成签到,获得积分10
8秒前
小茹完成签到,获得积分20
8秒前
5266发布了新的文献求助150
8秒前
fanconi完成签到 ,获得积分0
8秒前
kingwill应助五十采纳,获得20
8秒前
Judd应助yzzzz采纳,获得10
8秒前
糟糕的冬莲完成签到 ,获得积分10
8秒前
9秒前
今天很美味完成签到 ,获得积分10
10秒前
caihua发布了新的文献求助10
10秒前
LilyDong1218发布了新的文献求助10
10秒前
冰冰完成签到,获得积分10
11秒前
白白发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
聪明的傲白完成签到,获得积分10
13秒前
震动的忆文完成签到,获得积分10
14秒前
123关注了科研通微信公众号
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384951
求助须知:如何正确求助?哪些是违规求助? 3877937
关于积分的说明 12080577
捐赠科研通 3521425
什么是DOI,文献DOI怎么找? 1932484
邀请新用户注册赠送积分活动 973703
科研通“疑难数据库(出版商)”最低求助积分说明 871939