Adaptive multi-channel contrastive graph convolutional network with graph and feature fusion

邻接矩阵 计算机科学 判别式 图形 邻接表 人工智能 理论计算机科学 模式识别(心理学) 数据挖掘 算法
作者
Luying Zhong,Jielong Lu,Zhaoliang Chen,Na Song,Shiping Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:658: 120012-120012 被引量:2
标识
DOI:10.1016/j.ins.2023.120012
摘要

The domain of multi-view semi-supervised classification is an appealing topic in real-world applications. Due to the powerful capability of gathering information from neighbors, Graph Convolutional Network (GCN) has become a hotspot in the classification task. However, most of multi-view classification works based on GCN only assign weights for feature fusion, and directly consider the weighted sum of the adjacency matrices, ignoring the interaction and correlation among features. These may be problematic since aggregating the matrices from less relevant views may destroy the original topology space, leading to undesired performance. To tackle the aforementioned challenges, this paper presents an Adaptive Multi-Channel Graph Convolutional Network (AMC-GCN). To extract the interactive information, AMC-GCN designs a deep interactive feature integration network to incorporate consensus and complementary information. To fuse the graph structures, AMC-GCN exploits the relevance between views and imposes an adjacency matrix fusion network on constructing multiple GCN channels, thereby delivering discriminative information on graphs. To enhance the homogeneity of the framework, AMC-GCN applies a contrastive loss to joint learning during the optimization for classification. With these considerations, AMC-GCN exploits relevant and interactive information between views to promote graph and feature fusion. Substantial experimental results on real-world datasets verify the superiority of AMC-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zouzou完成签到,获得积分10
6秒前
6秒前
Freya应助xdy1990采纳,获得10
9秒前
10秒前
Zeal完成签到,获得积分10
12秒前
weddcf发布了新的文献求助10
12秒前
圈圈完成签到 ,获得积分10
13秒前
桐桐应助三岁居居采纳,获得10
14秒前
香蕉觅云应助他和她的猫采纳,获得10
15秒前
小马甲应助美丽的又菡采纳,获得10
16秒前
hello11发布了新的文献求助10
16秒前
20秒前
失眠的可乐完成签到,获得积分10
20秒前
TLB完成签到,获得积分10
21秒前
23秒前
23秒前
23秒前
英姑应助turbohero采纳,获得10
24秒前
科研通AI5应助蜗居采纳,获得10
24秒前
26秒前
27秒前
27秒前
xiaolan发布了新的文献求助10
30秒前
Hmzh完成签到,获得积分10
31秒前
32秒前
32秒前
56发布了新的文献求助10
33秒前
轻松初阳完成签到 ,获得积分10
33秒前
达蒙璃完成签到 ,获得积分0
34秒前
暗芒完成签到,获得积分10
34秒前
sheep完成签到,获得积分10
36秒前
蜗居发布了新的文献求助10
37秒前
38秒前
在水一方应助栾小鱼采纳,获得10
38秒前
充电宝应助xiaolan采纳,获得10
39秒前
田様应助紫色系采纳,获得10
39秒前
40秒前
40秒前
40秒前
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979