What influences the activity of Degrader−Antibody conjugates (DACs)

化学 内化 结合 连接器 药物发现 泛素连接酶 计算生物学 泛素 纳米技术 生物化学 计算机科学 基因 受体 数学分析 材料科学 操作系统 生物 数学
作者
Yaolin Guo,Xiaoxue Li,Yang Xie,Di Wang
出处
期刊:European journal of medicinal chemistry [Elsevier]
卷期号:268: 116216-116216 被引量:19
标识
DOI:10.1016/j.ejmech.2024.116216
摘要

The targeted protein degradation (TPD) technology employing proteolysis-targeting chimeras (PROTACs) has been widely applied in drug chemistry and chemical biology for the treatment of cancer and other diseases. PROTACs have demonstrated significant advantages in targeting undruggable targets and overcoming drug resistance. However, despite the efficient degradation of targeted proteins achieved by PROTACs, they still face challenges related to selectivity between normal and cancer cells, as well as issues with poor membrane permeability due to their substantial molecular weight. Additionally, the noteworthy toxicity resulting from off-target effects also needs to be addressed. To solve these issues, Degrader-Antibody Conjugates (DACs) have been developed, leveraging the targeting and internalization capabilities of antibodies. In this review, we elucidates the characteristics and distinctions between DACs, and traditional Antibody-drug conjugates (ADCs). Meanwhile, we emphasizes the significance of DACs in facilitating the delivery of PROTACs and delves into the impact of various components on DAC activity. These components include antibody targets, drug-antibody ratio (DAR), linker types, PROTACs targets, PROTACs connections, and E3 ligase ligands. The review also explores the suitability of different targets (antibody targets or PROTACs targets) for DACs, providing insights to guide the design of PROTACs better suited for antibody conjugation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei68完成签到,获得积分20
刚刚
1秒前
FashionBoy应助实心小墩墩采纳,获得10
2秒前
3秒前
卡卡应助Eana采纳,获得10
4秒前
4秒前
俭朴的天薇完成签到,获得积分10
4秒前
4秒前
852应助wei68采纳,获得10
5秒前
6秒前
7秒前
韦老虎完成签到,获得积分10
7秒前
核桃核桃完成签到,获得积分10
7秒前
桐桐应助稚生w采纳,获得10
8秒前
一切都好发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
Leon发布了新的文献求助30
10秒前
科研通AI6应助hhh采纳,获得50
10秒前
10秒前
11秒前
Moment发布了新的文献求助10
11秒前
Hou发布了新的文献求助10
11秒前
12秒前
无极微光应助科研通管家采纳,获得20
13秒前
顾矜应助科研通管家采纳,获得50
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
顾矜应助称心誉采纳,获得10
13秒前
Zzzz应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
坦率灵槐应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
Zzzz应助科研通管家采纳,获得10
13秒前
13秒前
Luna_aaa应助科研通管家采纳,获得10
14秒前
Zzzz应助科研通管家采纳,获得10
14秒前
核桃核桃发布了新的文献求助10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662471
求助须知:如何正确求助?哪些是违规求助? 4843166
关于积分的说明 15100157
捐赠科研通 4820958
什么是DOI,文献DOI怎么找? 2580447
邀请新用户注册赠送积分活动 1534491
关于科研通互助平台的介绍 1493039