Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes

溶剂化 选择性 共价键 化学 离子 离子运输机 跨膜蛋白 化学物理 有机化学 生物化学 催化作用 受体
作者
Qingwei Meng,Xincheng Zhu,Weipeng Xian,Wei Wang,Zhengqing Zhang,Liping Zheng,Zhifeng Dai,Hong Yin,Shengqian Ma,Qi Sun
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (8)
标识
DOI:10.1073/pnas.2316716121
摘要

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助陶123采纳,获得10
1秒前
今后应助ddd采纳,获得10
1秒前
钟博士发布了新的文献求助10
1秒前
硕shuo完成签到 ,获得积分20
1秒前
3秒前
andrele应助panda采纳,获得10
3秒前
南岸娜娜完成签到,获得积分10
4秒前
延陵君应助小新爱看文献采纳,获得30
4秒前
5秒前
swag完成签到,获得积分10
5秒前
耍酷夜阑应助浮游呦呦采纳,获得10
5秒前
安清发布了新的文献求助10
8秒前
决明完成签到 ,获得积分10
9秒前
~~~~发布了新的文献求助30
10秒前
JYing发布了新的文献求助10
10秒前
11秒前
11秒前
15秒前
陶123发布了新的文献求助10
16秒前
17秒前
肥肥关注了科研通微信公众号
18秒前
刘刘发布了新的文献求助10
19秒前
李健应助甜欣028采纳,获得10
19秒前
21秒前
Danielle发布了新的文献求助10
22秒前
萌萌雨完成签到,获得积分10
22秒前
22秒前
24秒前
菜菜发布了新的文献求助10
24秒前
Dr.PingHu发布了新的文献求助20
24秒前
贝壳风铃完成签到,获得积分10
25秒前
29秒前
丁二烯完成签到,获得积分10
30秒前
钟博士完成签到,获得积分10
30秒前
ice完成签到,获得积分10
31秒前
31秒前
大模型应助Yes211采纳,获得10
33秒前
jiejie发布了新的文献求助10
33秒前
8941发布了新的文献求助10
34秒前
36秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2411641
求助须知:如何正确求助?哪些是违规求助? 2106542
关于积分的说明 5323349
捐赠科研通 1833972
什么是DOI,文献DOI怎么找? 913825
版权声明 560895
科研通“疑难数据库(出版商)”最低求助积分说明 488667