Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes

溶剂化 选择性 共价键 化学 离子 离子运输机 跨膜蛋白 化学物理 有机化学 生物化学 催化作用 受体
作者
Qing-Wei Meng,Xincheng Zhu,Weipeng Xian,Sai Wang,Zhengqing Zhang,Liping Zheng,Zhifeng Dai,Hong Yin,Shengqian Ma,Qi Sun
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (8) 被引量:30
标识
DOI:10.1073/pnas.2316716121
摘要

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li + and Mg 2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li + and Mg 2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li + and Mg 2+ , resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li + /Mg 2+ selectivity of up to 1352, making it one of the most effective membranes available for Li + /Mg 2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa完成签到,获得积分10
1秒前
weishuhan完成签到 ,获得积分10
1秒前
大玲完成签到,获得积分10
1秒前
wxwang发布了新的文献求助10
1秒前
虚心沂发布了新的文献求助10
1秒前
1秒前
Z160完成签到,获得积分10
1秒前
ClaudiaCY完成签到,获得积分10
2秒前
2秒前
3秒前
锦鲤完成签到,获得积分20
3秒前
茉莉园完成签到,获得积分10
3秒前
3秒前
hawz发布了新的文献求助10
3秒前
yyk发布了新的文献求助10
3秒前
LU完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
我有一头小毛驴完成签到,获得积分10
4秒前
DLDL完成签到,获得积分10
4秒前
义气的金连完成签到,获得积分20
5秒前
5秒前
龙抬头发布了新的文献求助10
5秒前
5秒前
5秒前
追寻宛发布了新的文献求助50
5秒前
大模型应助洁净的钢笔采纳,获得10
5秒前
ddm发布了新的文献求助10
6秒前
6秒前
7秒前
lifeup完成签到,获得积分10
7秒前
ED应助虾虾采纳,获得10
7秒前
kurtlin发布了新的文献求助20
8秒前
北海发布了新的文献求助10
8秒前
跳跃奇迹发布了新的文献求助10
8秒前
文艺的冬卉完成签到,获得积分20
9秒前
西宁发布了新的文献求助10
9秒前
baobao完成签到,获得积分10
10秒前
吴皮皮鲁发布了新的文献求助10
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173