Fueling the future: Overcoming the barriers to market development of renewable fuels in Germany using a novel analytical approach

可再生能源 生化工程 环境经济学 自然资源经济学 环境科学 经济 工程类 电气工程
作者
Ali Ebadi Torkayesh,Sepehr Hendiani,Grit Walther,Sandra Venghaus
出处
期刊:European Journal of Operational Research [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.ejor.2024.02.039
摘要

Germany has set ambitious targets for reducing greenhouse gas (GHG) emissions, namely by 65% until 2030 (compared to the 1990 level) and achieving climate neutrality by 2045. Although GHG emissions have decreased in most sectors, the transport sector has experienced failed reduction attempts. Renewable fuels are promising sustainable fuel alternatives that can replace current market-dominant fossil fuels to reduce GHG emissions. However, the market development of renewable fuels is hindered by various economic, environmental, technical, regulatory, and social barriers. Using a novel holistic approach, this study aims to analyze the market development barriers for renewable fuels in the German transport sector. First, a novel extension to the decision making trial and evaluation laboratory (DEMATEL) method is proposed using the Type-2 Neutrosophic Numbers (T2NN), which is improved by the K-means algorithm. Second, the maximum mean de-entropy algorithm is applied to convert the results of T2NN-DEMATEL into input for interpretive structural modeling (ISM). Next, a case study is conducted to analyze the impacts of barriers on different transport modes using the T2NN-based additive ratio assessment. Extensive sensitivity analyses are conducted to measure the impacts of different factors under different circumstances. The obtained results indicate that insufficient renewable energy policies and regulations, the lack of coordination in the supply chain, and high technology conversion challenges are the most significant barriers. Moreover, road and maritime transport are affected more than the aviation and rail sectors by the market development barriers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panxue发布了新的文献求助10
1秒前
1秒前
斯文败类应助木木采纳,获得10
1秒前
包远锋完成签到,获得积分10
1秒前
Longye4424发布了新的文献求助10
2秒前
核桃发布了新的文献求助10
3秒前
4秒前
山猫发布了新的文献求助20
5秒前
Ava应助罗山柳采纳,获得10
5秒前
6秒前
斯文败类应助懦弱的雪兰采纳,获得10
8秒前
桐桐应助久而久之采纳,获得10
8秒前
麟钰发布了新的文献求助10
9秒前
VV完成签到,获得积分10
10秒前
24发布了新的文献求助10
10秒前
星辰完成签到,获得积分10
12秒前
完美世界应助科研通管家采纳,获得10
15秒前
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
冰魂应助科研通管家采纳,获得20
15秒前
孙燕应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
山猫完成签到,获得积分10
16秒前
大个应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
24完成签到,获得积分10
16秒前
迟青应助科研通管家采纳,获得20
16秒前
和谐半青应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
cdercder应助平淡的翠霜采纳,获得10
16秒前
情怀应助包元霜采纳,获得50
17秒前
华仔应助linhuafeng采纳,获得10
18秒前
18秒前
研究材料的12年枪迷完成签到,获得积分10
19秒前
开朗孤兰发布了新的文献求助10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842679
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536789
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110