Abstract The interaction between a co‐catalyst and photocatalyst usually induces spontaneous free‐electron transfer between them, but the effect and regulation of the transfer direction on the hydrogen‐adsorption energy of the active sites have not received attention. Herein, to steer the free‐electron transfer in a favorable direction for weakening S−H ads bonds of sulfur‐rich MoS 2+ x , an electron‐reversal strategy is proposed for the first time. The core–shell Au@MoS 2+ x cocatalyst was constructed on TiO 2 to optimize the antibonding‐orbital occupancy. Research results reveal that the embedded Au can reverse the electron transfer to MoS 2+ x to generate electron‐rich S (2+δ)− active sites, thus increasing the antibonding‐orbital occupancy of S−H ads in the Au@MoS 2+ x cocatalyst. Consequently, the increase in the antibonding‐orbital occupancy effectively destabilizes the H 1s‐p antibonding orbital and weakens the S−H ads bond, realizing the expedited desorption of H ads to rapidly generate a lot of visible H 2 bubbles. This work delves deep into the latent effect of the photocatalyst carrier on cocatalytic activity.