数学
分叉
碰撞
边界(拓扑)
数学分析
分段
鞍结分岔
固定点
非线性系统
计算机科学
物理
计算机安全
量子力学
作者
Iryna Sushko,Виктор Аврутин,Laura Gardini
标识
DOI:10.1080/10236198.2023.2205960
摘要
A 2D piecewise linear continuous two-parameter map known as the Lozi map is a special case of the 2D border collision normal form depending on four parameters. In the present paper, we investigate how the bifurcation structure of the Lozi map is incorporated into the bifurcation structure of the 2D border collision normal form using an analytical representation of the boundaries of the largest periodicity regions related to the cycles with rotation number 1/n, n⩾3. At the centre bifurcation boundary of the stability domain of the fixed point both maps are conservative which leads to a quite intricate bifurcation structure near this boundary.
科研通智能强力驱动
Strongly Powered by AbleSci AI