A Multisource Domain Adaptation Network for Process Fault Diagnosis Under Different Working Conditions

断层(地质) 过程(计算) 计算机科学 学习迁移 人工智能 特征(语言学) 特征提取 领域(数学分析) 模式识别(心理学) 特征选择 机器学习 数据挖掘 数学 地质学 数学分析 哲学 操作系统 地震学 语言学
作者
Shijin Li,Jianbo Yu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (6): 6272-6283 被引量:30
标识
DOI:10.1109/tie.2022.3194654
摘要

Transfer learning-based process fault diagnosis has received intensive attention from researchers. However, a practical scenario of process fault diagnosis (i.e., multisource domain adaptation) has not been well solved under various working conditions. It is challenging since distribution difference coexists between different source domains and across source and target domains. In this article, a novel transfer learning model, feature-level, and class-level based multisource domain adaptation (FC-MSDA) is proposed for process fault diagnosis under varying working conditions. A common feature extractor is proposed to learn both global and local features from process signals. A feature selection module is developed to reduce negative transfer caused by irrelevant information in multiple source domains. Domain specific feature generator is developed for each source-target domain pair to learn domain-specific features. Moreover, class-level distribution alignment loss is proposed for each domain pair to settle the negative transfer caused by inconsistent label space between domains from different working conditions of process. An information fusion strategy is performed to ensemble multiple predictions. The experimental results on three industrial cases demonstrate the effectiveness of FC-MSDA in process fault diagnosis (i.e., FC-MSDA obtains the average accuracy of 99.17% on five transfer tasks in three phase process).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
什米发布了新的文献求助10
刚刚
jenningseastera应助malaodi采纳,获得10
1秒前
健忘书兰发布了新的文献求助10
1秒前
1秒前
shiyu发布了新的文献求助10
1秒前
只喝牛奶不喝酒完成签到,获得积分10
1秒前
那地方发布了新的文献求助30
2秒前
饭后瞌睡完成签到,获得积分10
2秒前
2秒前
2秒前
Littlerain~完成签到,获得积分10
3秒前
缺水哥发布了新的文献求助10
3秒前
add发布了新的文献求助10
3秒前
小马甲应助冷酷的风华采纳,获得10
4秒前
认真柠檬完成签到,获得积分10
4秒前
Jelly完成签到 ,获得积分10
4秒前
Yuki完成签到 ,获得积分10
4秒前
茕凡桃七发布了新的文献求助10
5秒前
小二郎应助星星采纳,获得10
5秒前
feifeiaym应助一点通采纳,获得10
6秒前
cxy20230927完成签到 ,获得积分20
6秒前
隐形曼青应助冷月采纳,获得10
6秒前
777发布了新的文献求助10
6秒前
cheers发布了新的文献求助10
6秒前
谦让之云发布了新的文献求助10
6秒前
7秒前
7秒前
orixero应助吧嗒采纳,获得10
8秒前
六月残雪完成签到 ,获得积分10
8秒前
鳗鱼盼夏发布了新的文献求助10
8秒前
善学以致用应助翟zhai采纳,获得10
8秒前
越红完成签到,获得积分10
9秒前
明理代真发布了新的文献求助10
9秒前
9秒前
10秒前
什米完成签到,获得积分10
10秒前
Lucas应助娇气的友易采纳,获得10
10秒前
健忘书兰完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813647
求助须知:如何正确求助?哪些是违规求助? 3358007
关于积分的说明 10390954
捐赠科研通 3075296
什么是DOI,文献DOI怎么找? 1689246
邀请新用户注册赠送积分活动 812632
科研通“疑难数据库(出版商)”最低求助积分说明 767252