Review on Medical Image Compression

图像压缩 计算机科学 无损压缩 数据压缩 医学影像学 可视化 图像处理 工作量 人工智能 有损压缩 计算机视觉 图像(数学) 操作系统
作者
Nita Gopal,L Kala,L Arun
出处
期刊:International Journal of Advanced Research in Science, Communication and Technology [Naksh Solutions]
卷期号:: 54-64
标识
DOI:10.48175/ijarsct-12010
摘要

In today’s digital era, the demand for digital medical images is rapidly increasing. Hospitals are transitioning to filmless imaging systems, emphasizing the need for efficient storage and seamless transmission of medical images. To meet these requirements, medical image compression becomes essential. However, medical image compression typically necessitates lossless compression techniques to preserve the diagnostic quality and integrity of the images. There are several challenges associated with medical image compression and management. Firstly, medical image management and image data mining involve organizing and accessing large volumes of medical images efficiently for clinical and research purposes. Secondly, bioimaging, which encompasses various imaging modalities like microscopy and molecular imaging, presents specific requirements and challenges for compression algorithms. Thirdly, virtual reality technologies are increasingly utilized in medical visualizations, demanding efficient compression methods to handle the high resolution and immersive nature of VR medical imaging data. Lastly, neuro imaging deals with complex brain imaging data, requiring specialized compression techniques tailored to the unique characteristics of these images. As the amount of medical image data continues to grow, image processing and visualization algorithms have to be adapted to handle the increased workload. Researchers and developers have been working on various compression algorithms to address these challenges and optimize medical image compression. This review paper compares different compression algorithms that would provide valuable insights into the strengths, limitations, and performance metrics of various techniques. It would assist researchers, clinicians, and imaging professionals in selecting the most suitable compression algorithm for their specific needs, considering factors such as compression ratio, computational complexity, and image quality preservation. By comprehensively comparing compression algorithms, this review paper contributes to advancing the field of medical image compression, facilitating efficient image storage, transmission, and analysis in healthcare settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maybe豪发布了新的文献求助10
刚刚
215858687完成签到,获得积分10
刚刚
刚刚
杨衍完成签到,获得积分10
刚刚
asADA发布了新的文献求助10
1秒前
黑石完成签到,获得积分10
1秒前
1秒前
领导范儿应助JUYIN采纳,获得10
1秒前
小二郎应助Vanni采纳,获得10
1秒前
liuting完成签到,获得积分10
1秒前
2秒前
小马甲应助告白气球采纳,获得10
2秒前
搜集达人应助嘿嘿嘿采纳,获得10
2秒前
古哥完成签到,获得积分10
3秒前
Wonderland发布了新的文献求助10
3秒前
隐形曼青应助千瓦时醒醒采纳,获得10
4秒前
4秒前
Hello应助朱金雨采纳,获得20
4秒前
123456完成签到,获得积分10
4秒前
4秒前
Murphy完成签到,获得积分10
5秒前
科研通AI5应助Zhao采纳,获得10
5秒前
科研通AI6应助傅逊采纳,获得30
5秒前
喜悦的尔阳完成签到,获得积分10
5秒前
星辰大海应助无心采纳,获得10
5秒前
6秒前
老实老头发布了新的文献求助60
6秒前
6秒前
Crachin完成签到,获得积分10
6秒前
zxping发布了新的文献求助10
6秒前
古哥发布了新的文献求助10
6秒前
自由仙完成签到,获得积分10
7秒前
英俊的铭应助终抵星空采纳,获得10
7秒前
7秒前
思源应助虞头星星采纳,获得10
7秒前
无奈萝发布了新的文献求助10
8秒前
TTing完成签到,获得积分10
8秒前
JamesPei应助maybe豪采纳,获得10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194106
求助须知:如何正确求助?哪些是违规求助? 4376448
关于积分的说明 13629417
捐赠科研通 4231351
什么是DOI,文献DOI怎么找? 2320965
邀请新用户注册赠送积分活动 1319192
关于科研通互助平台的介绍 1269564