亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Planning of Fast EV Charging Stations in a Coupled Transportation and Electrical Power Distribution Network

充电站 稳健性(进化) 软件部署 尺寸 计算机科学 电动汽车 运输工程 可持续运输 荷电状态 流量网络 智能交通系统 运筹学 汽车工程 工程类 功率(物理) 数学优化 电池(电) 持续性 艺术 数学 生态学 化学 视觉艺术 生物 操作系统 生物化学 量子力学 物理 基因
作者
Aastha Kapoor,Viresh Patel,Ankush Sharma,Abheejeet Mohapatra
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4261-4271 被引量:9
标识
DOI:10.1109/tase.2023.3293955
摘要

Electric Vehicles (EVs) can effectively mitigate global warming issues while ensuring energy security, when compared with conventional fuel-based vehicles. Therefore, proper planning and development of charging infrastructure are essential to promote EVs. This paper proposes a multi-objective formulation to determine fast charging stations' optimal placement and sizing on intra-city corridors in a coupled transportation and Electrical Power Distribution Network (EPDN). The proposed formulation does a distance-based mapping between all transportation and EPDN nodes for precisely observing the impact of EV charging on EPDN. The proposed planning simultaneously considers the objectives and constraints of the transportation network and EPDN while satisfying the EV charging requirements. The EV charging demand, utilized in planning, is predicted using the Random Forest technique while considering the day type, hourly weather, and traffic flow that affect the forecasting accuracy. The improved Particle Swarm Optimization with Constriction Factor solves the proposed formulation for a 30-node EPDN coupled with a 25-node transportation network. The analysis of various cases, including varying initial State-Of-Charge of EVs and percentage growth of EVs per year, proves the efficacy and robustness of the proposed work. Note to Practitioners —The planned deployment of charging infrastructure is critical to facilitate EVs' adoption and sustainable growth of EV industries. Since, EV charging stations couple transportation network and EPDN, the planning strategy should consider requirements of both networks. For satisfactory driving experience of EV users, the planning should also consider driving range constraints and charging requirements of EV users. Several works on charging infrastructure planning have been carried out. However, several aspects relevant to EV users, transportation networks, EPDN, and determining EV charging demand have been overlooked in existing literature (as evidenced through Table comparisonlitercomparisonliter). These aspects must be considered simultaneously while planning charging stations. Hence, this work proposes a planning strategy for optimal placement and sizing of fast EV charging stations in a metropolitan city connecting multiple suburbs while considering several aspects of transportation networks and EPDNs. The proposed strategy can be utilized by utilities for efficient deployment of charging infrastructure on metropolitan city intra-city corridors. It establishes a distance-based mapping between all transportation and EPDN nodes for observing the impact of EV charging on EPDN. The determination of EV charging demand is a crucial step in the planning, which is determined by forecasting hourly traffic flow while considering several key attributes. The proposed approach achieves the EPDN objectives of reducing power loss, voltage deviation, and total charging stations' establishment cost, and transportation network objectives of maximising captured traffic flow while satisfying driving range constraints and charging requirements of EVs. Therefore, the focus is to utilize the existing grid infrastructure optimally while achieving the objectives and satisfying constraints of EV users, transportation network, and EPDN. Relevant case studies demonstrate the efficacy and robustness of proposed approach. The uncertainties in EVs' injections and arrival/ departure times will be considered in our future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的访烟完成签到,获得积分10
25秒前
38秒前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
42秒前
崔洪瑞发布了新的文献求助10
45秒前
1分钟前
ZZ完成签到,获得积分10
1分钟前
ZJakariae应助海盐芝士采纳,获得20
1分钟前
3211应助熊啊采纳,获得10
1分钟前
无私的含海完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
2分钟前
忧郁的蟑螂王完成签到 ,获得积分10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
3211应助熊啊采纳,获得10
2分钟前
LHS完成签到,获得积分10
2分钟前
3分钟前
恋阙谙发布了新的文献求助10
3分钟前
可千万不要躺平呀完成签到,获得积分10
3分钟前
Marshall完成签到 ,获得积分10
3分钟前
FashionBoy应助Ytgl采纳,获得10
3分钟前
HeLL0完成签到 ,获得积分10
4分钟前
深情安青应助yancey采纳,获得10
4分钟前
4分钟前
4分钟前
yancey发布了新的文献求助10
4分钟前
5分钟前
wawa发布了新的文献求助10
5分钟前
5分钟前
5分钟前
善学以致用应助wawa采纳,获得10
5分钟前
勤劳的小牛蛙完成签到,获得积分20
5分钟前
牛八先生完成签到,获得积分10
5分钟前
6分钟前
Owen应助渣渣辉采纳,获得10
6分钟前
木兰辞发布了新的文献求助10
6分钟前
木兰辞完成签到,获得积分10
6分钟前
6分钟前
科研通AI5应助含蓄的荔枝采纳,获得10
6分钟前
渣渣辉发布了新的文献求助10
6分钟前
6分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359317
关于积分的说明 10402190
捐赠科研通 3077173
什么是DOI,文献DOI怎么找? 1690217
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713